Sector CO₂ and SO_x Emissions Efficiency and Investments

Homogeneous vs Heterogeneous Estimates using the Italian NAMEA

Giovanni Marin

IMT Lucca giovanni.marin@imtlucca.it

International Society of Ecological Economics

11th Biennal Conference

Oldenburg and Bremen, 22-25 August 2010

Motivation and objective

- Current investments determine the composition and the features of the capital stock for several years ⇒ risk of lock-in in eco-inefficient technologies ⇒ high cost of restructuring in the future
- Energy prices and environmental taxes are likely to influence the environmental direction of new investments
- Which is the environmental direction of the structural and technological change experienced by Italian manufacturing sectors?
- ② Did energy prices and environmental taxes influence the direction of the structural and technological change?

The role of investments and induced technological change

- Investments and the environment:
 - Substitution of obsolete capital stock (+/-)
 - Expansion of the **productive capacity** (+)
 - Role of ICTs (+/-) ⇒ see the proceedings of the OECD Conference on 'ICTs, the environment and climate change' (November 2009)
 - 1 Direct effect (production and disposal of ICTs)
 - ICTs and improvement of the energy efficiency of the whole economic system
 - Radical changes in the production system favoured by the use of ICTs
- Role of energy prices and environmental taxes to induce eco-efficient technological change (e.g. Popp, 2002)

Data sources

- **Emissions** ⇒ Italian **NAMEA** (National Accounting Matrix including Environmental Accounts) by **Istat**
 - CO₂, SO_X
 - ullet 29 branches disaggregation (Nace Rev. 1.1) \Rightarrow focus on manufacturing
 - 1990-2007
- Labour (full-time equivalent jobs) ⇒ National accounts by Istat
- Investments ⇒ sector gross investments in 8 categories of capital goods ⇒ National accounts by Istat
- Energy prices ⇒ industry real price index and real price of gas, oil and coal products ⇒ IEA
- Environmental taxes ⇒ revenue from environmental taxes as fraction of GDP ⇒ Environmental accounts by Istat

Econometric models I

I estimate the following equation:

$$\begin{array}{lcl} \ln(\textit{E}_{\textit{st}}) & = & \alpha_{\textit{s}} + \sum_{\textit{i}} \beta_{\textit{i}} \ln(\textit{I}_{\textit{ist}-1}) + \delta \ln(\textit{L}_{\textit{st}}) + \sum_{\textit{j}} \gamma_{\textit{j}} \textit{Energy prices}_{\textit{jt}} + \\ & + & \sum_{\textit{k}} \eta_{\textit{k}} \textit{Env tax}_{\textit{kt}} + \varepsilon_{\textit{st}} \end{array}$$

- Gross investment categories (5):
 - Machinery, transportation, building, furniture, 'light investments' (ICTs)
- One year lag:
 - New goods enter gradually the production process
 - **Response** of past (t-1) investments to **future** (t) expected **prices/taxes**
 - Past investments are predetermined

Econometric models II

- Sector full-time equilvalent jobs
- Relative (to price index) energy industry prices for gas, oil and coal
- Real **price index** for industry
- Environmental taxes (taxes on pollution, transportation and energy) as fraction of GDP

The model is **estimated**:

- With fixed effects for the full set of manufacturing sectors (14) and for the 10 most important emitters (3-years time dummies are included)
- With Seemingly Unrelated Regression method (SUR) allowing for slope heterogeneity for the 10 most important emitters (environmental taxes are excluded)

FE estimates for CO₂

	Manufacturing	Manufacturing	Main emitters	Main emitters
	(1)	(2)	(3)	(4)
$ln(inv_machinery_{st-1})$	0.21***	0.23***	0.21***	0.24***
In(inv_transportation _{st-1})	[0.05] -0.11***	[0.05] -0.04	[0.05] -0.12***	[0.05] -0.06
. 31-17	[0.03]	[0.04]	[0.04]	[0.05]
$ln(inv_building_{st}_1)$	-0.08***	-0.09***	-0.10***	-0.12***
(31-1)	[0.03]	[0.03]	[0.03]	[0.03]
In(inv_furniture _{st - 1})	-0.01	-0.08**	-0.07*	-0.13**
, 31 1,	[0.02]	[0.03]	[0.03]	[0.05]
In(inv_'light' _{st-1})	0.05	0.06	0.20**	0.21**
5: 17	[0.05]	[0.05]	[0.08]	[0.09]
$ln(L_{st})$	0.70***	0.72***	0.64***	0.68***
	[0.12]	[0.12]	[0.15]	[0.14]
Price coal (rel) _{st}	-0.12	-0.37	-0.18	-0.31
	[0.14]	[0.30]	[0.18]	[0.36]
Price oil (rel) _{st}	0.22	0.18	0.24	0.32
	[0.22]	[0.32]	[0.25]	[0.38]
Price gas (rel) _{st}	0.02	-0.27	-0.14	-0.40
	[0.16]	[0.27]	[0.20]	[0.36]
Energy price index _{st}	0.00	0.01	0.01*	0.01*
	[0.00]	[0.00]	[0.00]	[0.00]
Tax on energy _{st}	0.05	0.13	0.11	0.19
	[0.07]	[0.13]	[0.09]	[0.16]
Tax on transportation _{st}	0.33	-1.32*	-0.10	-1.26
	[0.32]	[0.76]	[0.42]	[0.99]
Tax on pollution _{st}	2.74***	4.78	0.68	0.91
	[0.71]	[3.94]	[1.01]	[5.87]
Test time dummies (F)		2.34**	<u> </u>	5.12***
F test	9.11***	8.39***	6.81***	5.68***
N	238	238	170	170

FE estimates for SOx

	Manufacturing	Manufacturing	Main emitters	Main emitters
	(1)	(2)	(3)	(4)
$ln(inv_machinery_{st-1})$	0.05	0.11	0.17	0.24
	[0.13]	[0.14]	[0.18]	[0.19]
$ln(inv_transportation_{st-1})$	0.14	0.28**	0.02	0.12
	[0.11]	[0.12]	[0.16]	[0.19]
$ln(inv_building_{st-1})$	0.16**	0.17**	0.17*	0.18**
	[0.07]	[0.07]	[0.09]	[0.09]
$ln(inv_furniture_{st-1})$	0.01	-0.19**	0.05	-0.14
	[0.07]	[0.09]	[0.10]	[0.12]
$ln(inv_i'light'_{st-1})$	0.27*	0.23*	0.29	0.26
	[0.14]	[0.13]	[0.18]	[0.17]
$ln(L_{st})$	0.81**	0.81**	0.95**	0.94**
	[0.36]	[0.34]	[0.41]	[0.41]
Price coal (rel) _{st}	0.15	0.76	0.23	0.90
	[0.41]	[0.77]	[0.56]	[1.03]
Price oil (rel) _{st}	-0.78	-0.97	-0.81	-0.99
	[0.71]	[0.95]	[0.89]	[1.27]
Price gas (rel)st	-1.07**	-0.43	-0.92	-0.38
	[0.45]	[1.03]	[0.60]	[1.39]
Energy price indexst	0.00	0.01	0.00	0.01
	[0.01]	[0.01]	[0.01]	[0.01]
Tax on energy _{st}	1.07***	1.16***	1.09***	1.17**
	[0.18]	[0.41]	[0.23]	[0.54]
Tax on transportation _{st}	-3.93***	-5.17**	-3.60***	-4.36
	[0.75]	[2.56]	[1.00]	[3.35]
Tax on pollution _{st}	-12.80***	-39.80***	-11.95***	-39.72**
	[2.13]	[12.81]	[2.55]	[17.26]
Test time dummies (F)	-	3.13***	-	1.41
F test	98.57***	77.44***	54.36***	40.6***
N	238	238	170	170

SUR unconstrained estimates for CO₂ (I)

	DA	DB	DE	DF	DG	
	(Food)	(Textile)	(Paper)	(Refineries)	(Chemicals)	
$ln(inv_machin{st-1})$	-0.35	-0.71***	-0.18	-0.01	0.26***	
	[0.33]	[0.20]	[0.17]	[0.04]	[0.04]	
$ln(inv_transp_{st-1})$	0.04	0.52***	-0.17*	-0.05	0.23***	
	[0.09]	[0.15]	[0.09]	[0.07]	[0.04]	
$ln(inv_build{st-1})$	0.08	-0.46***	0.20*	0.08*	-0.25***	
	[0.13]	[0.11]	[0.10]	[0.04]	[0.03]	
$ln(inv_furn{st-1})$	-0.09	0.63***	-0.19***	0.03	-0.26***	
	[0.10]	[0.12]	[0.06]	[0.02]	[0.04]	
$ln(inv_'light'_{st}-1)$	0.46**	-0.05	0.37***	0.03	-0.15**	
	[0.23]	[0.13]	[0.12]	[0.08]	[0.06]	
$ln(L_{st})$	0.16	-1.37***	-0.44	0.07	0.55***	
	[1.07]	[0.41]	[0.51]	[0.31]	[0.08]	
P. coal (rel) _{st}	-0.68**	-0.33	-0.38**	0.04	0.29***	
	[0.28]	[0.25]	[0.16]	[0.18]	[0.08]	
P. oil (rel) _{st}	0.50	-0.91*	0.48	0.03	0.20	
	[0.64]	[0.48]	[0.33]	[0.34]	[0.15]	
P. gas (rel) _{st}	-0.67	-0.91***	-0.07	0.40	-0.02	
- , , , , ,	[0.46]	[0.29]	[0.23]	[0.34]	[0.11]	
Energy p. indexst	0.01*	-0.02***	0.01***	-0.01**	-0.01***	
	[0.00]	[0.00]	[0.00]	[0.00]	[0.00]	
Constant	14.73*	32.14***	17.03***	16.48***	14.09***	
	[7.96]	[3.53]	[3.47]	[0.87]	[0.75]	
Breusch-Pagan test of independence: χ^2 =57.394, p-value= 0.1018						

SUR unconstrained estimates for CO₂ (II)

	DH	DI	DJ	DK	DM	
	(Plastic)	(Non-met. prod.)	(Metal prod.)	(Machinery)	(Transport)	
$ln(inv_machin{st-1})$	0.15	0.13*	0.14	-0.30***	-0.31*	
	[0.09]	[0.07]	[0.11]	[0.11]	[0.17]	
$ln(inv_transp_{st-1})$	-0.15***	0.25***	-0.15**	0.11*	0.15***	
	[0.05]	[0.08]	[0.07]	[0.06]	[0.04]	
$ln(inv_build{st-1})$	0.15***	-0.39***	0.14**	-0.60***	0.33***	
	[0.04]	[0.12]	[0.05]	[0.07]	[0.07]	
$ln(inv_furn{st-1})$	0.32***	-0.12*	-0.17***	-0.29***	0.00	
	[0.07]	[0.06]	[0.06]	[0.04]	[0.04]	
$ln(inv_'light'_{st-1})$	-0.21**	0.02	-0.38***	0.68***	-1.12***	
	[0.10]	[0.10]	[0.08]	[0.14]	[0.29]	
$ln(L_{st})$	1.65***	-0.56	0.46	-0.96**	-0.52**	
	[0.29]	[0.41]	[0.34]	[0.38]	[0.26]	
P. coal (rel) _{st}	0.13	0.08	0.24*	-0.96***	-0.72***	
	[0.11]	[0.23]	[0.13]	[0.15]	[0.17]	
P. oil (rel) _{st}	0.37*	-0.54	0.70**	0.91***	0.13	
	[0.22]	[0.39]	[0.29]	[0.32]	[0.28]	
P. gas (rel) _{st}	0.56***	-0.09	0.17	0.57***	0.24	
	[0.19]	[0.20]	[0.21]	[0.20]	[0.16]	
Energy p. indexst	0.01*	0.01**	-0.00	0.00	0.00	
	[0.00]	[0.00]	[0.00]	[0.00]	[0.00]	
Constant	3.35**	21.49***	15.18***	23.62***	24.74***	
	[1.45]	[2.86]	[1.99]	[2.18]	[3.75]	
Breusch-Pagan test of independence: χ^2 =57.394, p-value= 0.1018						

SUR unconstrained estimates for SOx (I)

	DA	DB	DC	DD	DF	
	(Food)	(Textile)	(Leather)	(Wood)	(Refineries)	
$ln(inv_machin{st-1})$	-1.39***	-2.25***	-0.67**	-3.78***	0.25**	
	[0.39]	[0.63]	[0.32]	[0.61]	[0.12]	
$ln(inv_transp_{st-1})$	-0.01	2.23***	0.42*	-0.11	-0.08	
	[0.09]	[0.47]	[0.25]	[0.28]	[0.19]	
$ln(inv_build{st-1})$	-0.68***	-1.92***	0.22	0.32	-0.07	
	[0.13]	[0.34]	[0.18]	[0.46]	[0.12]	
$ln(inv_furn{st-1})$	0.24***	2.22***	0.44***	-0.18	-0.11**	
	[0.09]	[0.32]	[0.13]	[0.21]	[0.06]	
$ln(inv_'light'_{st-1})$	-0.67***	-0.83**	-0.14	0.92**	-0.40*	
	[0.21]	[0.34]	[0.25]	[0.46]	[0.21]	
$ln(L_{st})$	-6.16***	-1.04	5.67***	8.60***	-0.57	
	[0.89]	[0.98]	[1.07]	[2.05]	[0.89]	
P. coal (rel) _{st}	-0.44*	-0.81	0.81	-3.48***	0.96*	
	[0.26]	[0.75]	[0.76]	[1.04]	[0.52]	
P. oil (rel) _{st}	1.36**	-3.85***	0.06	4.14**	0.18	
	[0.66]	[1.36]	[1.44]	[1.95]	[0.99]	
P. gas (rel) _{st}	-1.14**	-2.65***	1.93*	-2.13*	-1.01	
	[0.49]	[0.79]	[0.99]	[1.23]	[0.96]	
Energy p. indexst	-0.01**	-0.09***	-0.01	0.01	-0.01	
	[0.00]	[0.01]	[0.01]	[0.01]	[0.01]	
Constant	66.91***	43.85***	-24.50***	-18.22	14.66***	
	[7.09]	[9.38]	[7.69]	[12.04]	[2.61]	
Breusch-Pagan test of independence: χ^2 =94.960, p-value= 0.0000						

SUR unconstrained estimates for SOx (II)

	DG	DH	DI	DJ	DK		
	(Chemicals)	(Plastic)	(Non-met. prod.)	(Metal prod.)	(Machinery)		
$ln(inv_machin{st-1})$	0.34	-0.01	0.10***	0.31	0.53*		
	[0.31]	[0.60]	[0.04]	[0.36]	[0.28]		
$ln(inv_transp_{st-1})$	-0.85***	-0.23	-0.02	-0.11	0.33**		
	[0.27]	[0.37]	[0.05]	[0.20]	[0.14]		
$ln(inv_build{st-1})$	-0.55***	-0.43*	0.08	-0.04	-0.08		
	[0.16]	[0.23]	[0.06]	[0.20]	[0.17]		
$ln(inv_furn{st-1})$	-0.13	-0.49	-0.02	-0.40**	0.43***		
	[0.25]	[0.37]	[0.03]	[0.18]	[0.10]		
$ln(inv_i)light'_{st-1}$	-1.27***	1.18*	-0.31***	-0.96***	-0.41		
	[0.40]	[0.60]	[0.06]	[0.25]	[0.32]		
$ln(L_{st})$	3.30***	-7.83***	1.31***	1.42	-5.60***		
	[0.60]	[1.81]	[0.26]	[1.12]	[0.88]		
P. coal (rel) _{st}	-0.11	-0.43	-0.41***	0.77**	0.21		
	[0.58]	[0.84]	[0.15]	[0.37]	[0.43]		
P. oil (rel) _{st}	2.16**	-1.50	0.02	2.50***	-1.27		
	[1.01]	[1.68]	[0.26]	[0.81]	[0.91]		
P. gas (rel) _{st}	-3.83***	-2.75**	-0.47***	0.66	0.40		
- , ,	[0.76]	[1.26]	[0.14]	[0.62]	[0.56]		
Energy p. indexst	-0.01	-0.05***	0.01*	-0.01	-0.03***		
	[0.01]	[0.01]	[0.00]	[0.01]	[0.01]		
Constant	8.12	56.99***	4.73***	4.36	41.63***		
	[5.54]	[9.11]	[1.79]	[6.50]	[5.05]		
Breusch-Pagan test of independence: χ^2 =94.960, p-value= 0.0000							

Conclusions and future research

- High degree of sector heterogeneity of the effect of investments on environmental efficiency
- Investments are not a good predictor of SOx emissions ⇒ SOx emissions are strongly correlated with environmental taxes and the abatement of SOx emissions through end-of-pipe devices does not require relevant structural changes
- Poor role of energy prices in inducing environmental efficiency ⇒
 the volatility of energy prices creates uncertainty about future
 conditions discouraging strong shifts to different energy regimes or
 strong improvements of energy efficiency
- Investments and energy prices/environmental taxes are likely to interact ⇒ explore interactions
- Explore the role of input-output relations among sectors in inducing technological change