Do Eco-Innovations Harm Productivity Growth through Crowding Out?

Results of an Extended CDM Model for Italy

Giovanni Marin

IMT Advanced Studies Lucca giovanni.marin@imtlucca.it

Brown Bag Seminar - IMT Lucca 28th March 2012

Outline of the paper

- Description of (eco-)innovation patterns of Italian manufacturing firms, with a specific focus on eco-innovations
- Assessment of the effect of eco-innovations on firms' productivity
 potential crowding-out
- Structural empirical model (CDM model) to describe innovation patterns at the firm level
- Use of administrative data (balance sheet, patent applications)
- Bad news ⇒ crowding out exists and it is particularly severe for polluting firms

Outline of the paper

- Description of (eco-)innovation patterns of Italian manufacturing firms, with a specific focus on eco-innovations
- Assessment of the effect of eco-innovations on firms' productivity
 potential crowding-out
- Structural empirical model (CDM model) to describe innovation patterns at the firm level
- Use of administrative data (balance sheet, patent applications)
- Bad news ⇒ crowding out exists and it is particularly severe for polluting firms

Outline of the paper

- Description of (eco-)innovation patterns of Italian manufacturing firms, with a specific focus on eco-innovations
- Assessment of the effect of eco-innovations on firms' productivity
 ⇒ potential crowding-out
- Structural empirical model (CDM model) to describe innovation patterns at the firm level
- Use of administrative data (balance sheet, patent applications)
- Bad news ⇒ crowding out exists and it is particularly severe for polluting firms

Eco-innovations: role and definition

Kemp and Pearson (2007) define eco-innovation as:

[...] "the production, assimilation or exploitation of a product, production process, service or management or business method that is novel to the organisation (developing or adopting it) and which results, throughout its life cycle, in a reduction of environmental risk, pollution and other negative impacts of resources use (including energy use) compared to relevant alternatives."

- Eco-innovation (creation and diffusion) is crucial to achieve sustainability (together with structural change)
- Environmental patents measure just part of potential eco-innovations
- Why should firm eco-innovate? ⇒ room for environmental policies

Eco-innovations: role and definition

Kemp and Pearson (2007) define eco-innovation as:

- [...] "the production, assimilation or exploitation of a product, production process, service or management or business method that is novel to the organisation (developing or adopting it) and which results, throughout its life cycle, in a reduction of environmental risk, pollution and other negative impacts of resources use (including energy use) compared to relevant alternatives."
- Eco-innovation (creation and diffusion) is crucial to achieve sustainability (together with structural change)
- Environmental patents measure just part of potential eco-innovations
- Why should firm eco-innovate? ⇒ room for environmental policies

Why should eco-innovations crowd out other innovations...

- R&D projects are generally financed by means of internal (limited) financial resources (Hall, 2002) ⇒ high risk, asymmetric information between entrepreneurs and banks
- R&D performed to obtain eco-innovations might crowd-out general R&D employed in other (possibly more profitable) projects (Popp and Newell, 2009)
- If crowding out occurs, eco-innovations will have a lower positive effect on productivity than other innovations or even a insignificant or negative effect

Why should eco-innovations crowd out other innovations...

- R&D projects are generally financed by means of internal (limited) financial resources (Hall, 2002) ⇒ high risk, asymmetric information between entrepreneurs and banks
- R&D performed to obtain eco-innovations might crowd-out general R&D employed in other (possibly more profitable) projects (Popp and Newell, 2009)
- If crowding out occurs, eco-innovations will have a lower positive effect on productivity than other innovations or even a insignificant or negative effect

.. and why not

Porter hypothesis (Porter and Van der Linde, 1995)

- Policy-induced eco-innovations might have strong positive effects on competitiveness (under certain conditions)
- Regulation as a signal for unexploited resource efficiency and technological possibilities
- Regulation reduces the uncertainty about the value of investments in environmental innovations
- Early regulation in view of future adoption of stringent standards also by competitors might give rise to first mover advantages
- Mixed evidence and theoretical criticism (Ambec et al, 2011)
 - departure from the assumption of maximizing firms
 - evidence generally based on case studies

.. and why not

Porter hypothesis (Porter and Van der Linde, 1995)

- Policy-induced eco-innovations might have strong positive effects on competitiveness (under certain conditions)
- Regulation as a signal for unexploited resource efficiency and technological possibilities
- Regulation reduces the uncertainty about the value of investments in environmental innovations
- **Early regulation** in view of future adoption of stringent standards also by competitors might give rise to **first mover advantages**
 - Mixed evidence and theoretical criticism (Ambec et al, 2011)
 - departure from the assumption of maximizing firms
 - evidence generally based on case studie

... and why not

Porter hypothesis (Porter and Van der Linde, 1995)

- Policy-induced eco-innovations might have strong positive effects on competitiveness (under certain conditions)
- Regulation as a signal for unexploited resource efficiency and technological possibilities
- Regulation reduces the uncertainty about the value of investments in environmental innovations
- Early regulation in view of future adoption of stringent standards also by competitors might give rise to first mover advantages
 - Mixed evidence and theoretical criticism (Ambec et al, 2011)
 - departure from the assumption of maximizing firms
 - evidence generally based on case studies

CDM model to describe innovation patterns (I)

- The CDM (Crepon, Duguet and Mairesse, 1998 NBER WP) model is an empirical structural model to describe innovation patterns at the firm level
- Determinants of innovation inputs (R&D) ⇒ determinants of innovation output (product-process innovations, innovative sales, patent applications) ⇒ effect of innovation output on productivity
- Sort of IV approach to account for endogeneity arising from actual simultaneity of firms' decisions and from possible reverse causality

CDM model to describe innovation patterns (II)

The model is composed by three distinct stages:

- R&D equation
- Innovation equation(s) (knowledge production function)
- Productivity equation

R&D equation

- Which are the drivers of innovation (input) intensity of firms? ⇒
 firm size, capital intensity, age, market share, region, sector and
 time fixed effects
- Few firms report R&D expenditure ⇒ firms perform formal R&D only if the expected returns pass an unobservable threshold ⇒
 Heckman sample selection model for R&D intensity

CDM model to describe innovation patterns (II)

The model is composed by three distinct stages:

- R&D equation
- Innovation equation(s) (knowledge production function)
- Productivity equation

R&D equation

- Which are the drivers of innovation (input) intensity of firms? ⇒
 firm size, capital intensity, age, market share, region, sector and
 time fixed effects
- Few firms report R&D expenditure ⇒ firms perform formal R&D only if the expected returns pass an unobservable threshold ⇒
 Heckman sample selection model for R&D intensity

CDM model to describe innovation patterns (III)

Innovation equation(s)

- Knowledge production function ⇒ introduction of innovations (dummy), share of innovative sales, patent applications (count variable) ⇒ patent applications count
- (Predicted) innovation inputs (R&D from the first step) and other factors (size, local knowledge stock, region, sector and time fixed effects)
- Negative Binomial (NB2) model to account for overdispersion

Productivity equation

- Extended production function ⇒ (predicted) patent intensity, capital intensity, sector, region and time fixed effects)
- OLS allowing for non-constant returns to scale

CDM model to describe innovation patterns (III)

Innovation equation(s)

- Knowledge production function ⇒ introduction of innovations (dummy), share of innovative sales, patent applications (count variable) ⇒ patent applications count
- (Predicted) innovation inputs (R&D from the first step) and other factors (size, local knowledge stock, region, sector and time fixed effects)
- Negative Binomial (NB2) model to account for overdispersion

Productivity equation

- Extended production function ⇒ (predicted) patent intensity, capital intensity, sector, region and time fixed effects)
- OLS allowing for non-constant returns to scale

Extension to the CDM model

- Distinction between environmental patent applications and other applications ⇒ two distinct patent equations and separate effect on productivity
- Is the effect of eco-innovation on productivity homogeneous for all firms? ⇒ check whether the effect differs systematically for firms with big polluting plants?

Some 'econometric' details

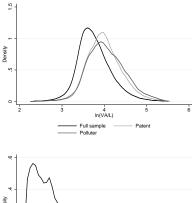
- The Heckman sample selection model has been estimated with maximum likelihood
- For estimates on the full sample, standard errors are clustered by firm
- For the patent and polluter samples, standard errors are clustered by sector (2 digit), region and year
- Results with bootstrap standard errors are available upon request (but very similar to those I report here)

Data sources

- Balance sheet information from AIDA (Bureau van Dijk) for about 73k Italian manufacturing firms in 2000-2007
- Patent applications to the European Patent Office (EPO) from PATSTAT (for matching procedure, Marin, 2011) ⇒ about 4k EPO applicants and 18k EPO applications ⇒ environmental patents identified according to their IPC class (OECD, WIPO)
- Firms with polluting plants were identified through the E-PRTR and EPER registries for big polluting plants (European Environment Agency)

Description of the samples

- Exclusion of very big (5000 employees) and very small (10 employees) firms
- Exclusion of outlier observations
- Focus on three samples:
 - full sample ⇒ 243,293 observations
 - patent sample ⇒ only observations with positive patent applications
 ⇒ 5,694 observations
 - polluter sample \Rightarrow only polluting (EPER, E-PRTR) firms \Rightarrow 6,413 observations


Table: Distribution by sector

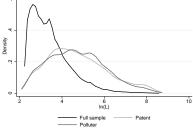

Sector	Full sample	Patent sample	Perc w/pat	Polluter sample	Perc pollu
DA (food & beverage)	18245	88	0.48%	348	1.91%
DB (textile)	19812	135	0.68%	283	1.43%
DC (leather)	8115	67	0.83%	81	1.00%
DD (wood)	6212	23	0.37%	78	1.26%
DE (paper & printing)	15434	103	0.67%	481	3.12%
DF-DG (petro-chemical)	11082	520	4.69%	1058	9.55%
DH (rubber & plastic)	14173	465	3.28%	181	1.28%
DI (non-metalic mineral prod.)	14461	111	0.77%	849	5.87%
DJ (basic metal prod.)	52915	942	1.78%	2244	4.24%
DK (machinery & equipment)	35990	1843	5.12%	216	0.60%
DL (electrical & optical)	21657	914	4.22%	187	0.86%
DM (transport equipment)	6698	227	3.39%	127	1.90%
DN (manuf. n.e.c.)	18499	256	1.38%	280	1.51%
Scale intensive manufacturing	88946	1752	1.97%	3452	3.88%
Science based manufacturing	26006	1110	4.27%	1192	4.58%
Specialized suppliers manufacturing	42024	2160	5.14%	218	0.52%
Supplier dominated goods	86317	672	0.78%	1551	1.80%
Total	243293	5694	2.34%	6413	2.64%

Table: Descriptive statistics

Variable	Mean	Q1	Median	Q3	Min	Max	SD/mea
		Full	sample				
Book value	13478	1800	3608	8392	113.7	7795221	5.36
Employees	63.8	15	26	50	10	4985	2.919
Fixed physical assets per employee	37.41	9.144	22.49	47.64	.6339	472.5	1.228
Value added per employee	47.21	33.23	41.32	54.21	10.2	237.2	.4831
Age	20.05	11	18	26	0	107	.6629
Market share	0.0077	0.0005	0.0013	0.0039	0	1	4.5426
R&D per employee	1.937	.08979	.3252	1.198	2.18e-06	529.7	4.193
Perform R&D (d.)	.3184	0	0	1	0	1	1.463
Regional patent stock pc	.539	.3602	.5676	.7812	.01131	.8801	.4869
		Pater	nt sample				
Total patents	2.092	1	1	2	1	44	1.461
Environmental patents (all)	.1507	0	0	0	0	25	4.498
Pollution and waste patents	.03548	0	0	0	0	3	6.057
Renewable energy patents	.04689	0	0	0	0	25	8.895

Model ၁၀၀၀၀ Data 0000● Results 00000000 Conclusions OO opendix

Is there a bias?

Table: Probability of filing for an environmental patent (patent sample)

All_env	(1)	(2)	(3)	(4)
Polluter	0.0825*** (0.0186)	0.0879*** (0.0189)	0.0275* (0.0155)	0.0173 (0.0149)
Polluting_sector	0.0115 (0.0139)	0.00918 (0.0137)	0.0322* (0.0170)	0.0437** (0.0177)
Polluter	0.0819*** (0.0187)	0.0878*** (0.0191)	0.0239 (0.0154)	0.0124 (0.0146)
Polluting_sector	0.00320 (0.0134)	0.000331 (0.0132)	0.0287* (0.0169)	0.0417** (0.0177)
Year d.	-	Yes	Yes	Yes
Macro_reg d.	-	Yes	Yes	Yes
Size (In(L))	-	-	Yes	Yes
Pavitt d.	-	-	Yes	Yes
Class_patent d.	-	-	-	Yes
N	5694	5694	5694	5694

Probit estimates, marginal effects are shown

Standard errors in parentheses; * p< 0.1, ** p< 0.05, *** p< 0.01

Table: First step: R&D equation

	Full s	ample	Pat	tent	Poll	uter
Dep: In(R&D/L)	OLS	Heckman	OLS	Heckman	OLS	Heckman
In(L)	-0.0992***	-0.685***	-0.180***	-0.433***	-0.103***	-0.474***
Market_sh	(0.0142) 0.855***	(0.0239) 2.516***	(0.0258) 0.995*	(0.0340) 2.801***	(0.0395) 0.215	(0.0460) 0.506*
In(K/L)	(0.283) 0.128***	(0.343) 0.00818	(0.513) 0.139***	(0.634) 0.102***	(0.261) 0.328***	(0.299) 0.184***
(, ,	(0.0126)	(0.0138)	(0.0337)	(0.0380)	(0.0420)	(0.0456)
Constant	-1.319*** (0.0797)	3.230*** (0.163)	-0.386* (0.222)	1.827*** (0.269)	-2.215*** (0.270)	1.781*** (0.354)
Perform R&D	Full s	ample	Pat	tent	Poll	uter
In(L)		0.143***		-0.0758		0.0905**
Market_sh		(0.0114) -1.847***		(0.0515) -2.081***		(0.0357) -0.350**
In(K/L)		(0.212) -0.0234***		(0.328) -0.0461**		(0.165) 0.0154
III(K/L)		(0.00585)		(0.0210)		(0.0241)
In(book_value)		0.426*** (0.00987)		0.378*** (0.0458)		0.234*** (0.0315)
Age> 10		0.0212*		0.0683		-0.0834* [*]
Constant		(0.0126) -4.658***		(0.0486) -2.742***		(0.0388) -2.884***
		(0.0568)		(0.243)		(0.157)
Chi sq		1235.0		239.2		284.1
sigma rho		2.407 -0.731		2.193 -0.808		2.492 -0.803
lambda		-1.758		-1.771		-2.002
Chi sq (rho)	-162806.1	1112.1*** -283964.1	-8257.8	224.1*** -11200.0	-7206.1	201.6*** -11060.6
Log likelihood N	77470	243293	4052	5694	3415	6413

Classical CDM (I)

Table: Second step: Patent equation

	Full	Patent	Polluter
In(R&D/L)*	0.262	0.356***	0.904**
	(0.199)	(0.0728)	(0.412)
In(L)	1.229***	0.456***	1.290***
	(0.131)	(0.0284)	(0.179)
In(reg_pat_stock_pc)	0.112	0.136**	0.0644
	(0.142)	(0.0578)	(0.401)
Pavitt (science)	0.553***	0.0829	0.635*
	(0.119)	(0.0542)	(0.365)
Pavitt (spec_suppl)	0.833***	-0.0406	0.630***
	(0.0931)	(0.0419)	(0.218)
Pavitt (suppl_dom)	-0.999***	-0.190***	-0.846***
	(0.0906)	(0.0459)	(0.234)
Constant	-9.427***	-2.417***	-9.728***
	(0.953)	(0.356)	(2.293)
Chi sq	3202.5	1311.9	419.2
alpha	10.25	0.228	10.95
Log likelihood	-29051.5	-9631.0	-2213.9
N	243293	5694	6413

Standard errors in parentheses

^{*} p< 0.1, ** p< 0.05, *** p< 0.01

Classical CDM (II)

Table: Third step: productivity equation

Dep: In(VA/L)	Full	Patent	Polluter
In(K/L)	0.118***	0.101***	0.187***
In(patent/L)*	(0.00132) 0.381***	(0.00685) 0.431***	(0.00873) 0.114***
In(L)	(0.0108) 0.00595***	(0.0669) 0.320***	(0.0335) 0.0517***
, ,	(0.00191)	(0.0453)	(0.00541)
Constant	6.368*** (0.0883)	3.925*** (0.0863)	3.961*** (0.267)
R sq	0.211	0.182	0.322
F	1664.3	57.44	123.4
N	243293	5694	6413

Standard errors in parentheses

^{*} p< 0.1, ** p< 0.05, *** p< 0.01

Comments on the Classical CDM model

- Systematic differences between samples
- Poor performance of the measure of R&D for the full sample vs meaningful results for the patent and polluter samples
- Firm **size** is crucial to '**cross the hurdle**' of R&D and patent application
- Low (productivity) returns to innovation success for the polluter sample relative to the full and patent sample ⇒ is it a first signal of crowding out?

Extended CDM (I)

Table: Second step: Patent equation (Env = all environmental patents)

	Full s	ample	Pat	ent	Poll	uter
	No_env	Env	No env	Env	No_env	Env
In(R&D/L)*	0.248	0.272	0.328***	0.812***	0.947**	2.421***
	(0.200)	(0.319)	(0.0726)	(0.201)	(0.425)	(0.892)
In(L)	1.222***	1.215***	0.446***	0.612***	1.315***	1.933***
	(0.131)	(0.207)	(0.0286)	(0.0774)	(0.180)	(0.454)
In(reg_pat_stock_pc)	0.139	-0.0768	0.159***	-0.213	-0.00723	1.216**
	(0.148)	(0.215)	(0.0602)	(0.155)	(0.407)	(0.497)
Poll (air)		-0.306		-0.427		-0.206
		(0.520)		(0.288)		(0.298)
Poll (water)		0.0772		-0.365		0.102
		(0.553)		(0.224)		(0.311)
Poll (haz_waste)		0.613		0.247		-1.050
		(0.443)		(0.281)		(0.695)
Poll (no_haz_waste)		-0.0580		0.223		0.550*
		(0.457)		(0.317)		(0.318)
Poll (other)		0.0788		-1.265*		-1.330
		(0.654)		(0.761)		(0.994)
Polluting_sect		-0.620***		0.132		-2.250***
		(0.207)		(0.163)		(0.461)
Constant	-9.629***	-10.70***	-2.578***	-4.012***	-9.560***	-20.34***
	(0.986)	(1.482)	(0.373)	(0.935)	(2.329)	(3.687)
Chi sq	3152.1	701.4	1164.2	207.3	430.3	2013.8
alpha	10.43	28.38	0.245	3.898	11.01	14.40
Log likelihood	-27620.1	-3807.6	-9457.4	-2252.6	-2086.0	-428.6
N	243293	243293	5694	5694	6413	6413

Extended CDM (II)

Table: Third step: productivity equation (separate effect for env and no_env)

	Full s	Full sample Patent		tent	Pol	luter
Dep: In(VA/L)	(1)	(2)	(1)	(2)	(1)	(2)
In(K/L)	0.1184*** (0.0013)	0.1215*** (0.0013)	0.1028*** (0.0067)	0.1028*** (0.0072)	0.194*** (0.0082)	0.211*** (0.0071)
In(no_env/L)*	0.3868*** (0.0112)	, ,	0.4114*** (0.0672)	, ,	0.0688*** (0.0253)	, ,
In(env/L)*		0.0266*** (0.0049)		0.1449*** (0.0289)		-0.0154*** (0.0053)
In(L)	0.0052*** (0.0019)	0.0356*** (0.0017)	0.3075*** (0.0455)	0.1273*** (0.0196)	0.046*** (0.0048)	0.0357*** (0.0042)
Constant	6.4556*** (0.0926)	3.5538*** (0.0514)	3.9348*** (0.0906)	4.0052*** (0.1254)	3.610*** (0.2071)	2.885*** (0.0685)
R sq F	0.2109 1662.51	0.2021 1589.53	0.1814 56.64	0.1792 55.88	0.3215 123.09	0.3217 120.94
N	243293	243293	5694	5694	6413	6413

Extended CDM (III)

Table: Third step: productivity equation (Env = all environmental patents)

	Full s	ample	Pat	ent	Polluter
Dep: In(VA/L)	(1)	(2)	(1)	(2)	(1)
In(K/L)	0.117***	0.115***	0.0975***	0.0975***	0.198***
1.7	(0.00133) 0.420***	(0.00133) 0.433***	(0.00724) 0.328***	(0.00708)	(0.00836)
In(no_env/L)*	(0.0131)	(0.0132)	(0.0807)	0.303*** (0.0802)	0.0676*** (0.0253)
In(env/L)*	-0.0308***	-0.0455***	0.0824**	0.0733**	-0.0152***
` , ,	(0.00552)	(0.00568)	(0.0347)	(0.0351)	(0.00534)
polluter \times		-0.0183*		-0.0383**	
In(env/L)*		(0.0101)		(0.0183)	
polluter		-0.0521		-0.228	
		(0.0997)		(0.139)	
In(L)	0.00510***	0.000740	0.307***	0.280***	0.0421***
C	(0.00194) 6.409***	(0.00196) 6.377***	(0.0465) 4.156***	(0.0472) 4.111***	(0.00493) 3.439***
Constant	(0.0924)	(0.0925)	(0.128)	(0.130)	(0.221)
	(0.0924)	(0.0923)	(0.120)	(0.130)	(0.221)
Net effect		-0.0639***	l	0.0340	
for polluter		(0.0109)		(0.0396)	
R sq	0.211	0.214	0.183	0.184	0.322
F	1564.6	1413.6	54.97	55.88	113.0
N	243293	243293	5694	5694	6413

- Innovation output of Italian polluting firms and sectors is significantly biased towards environmental innovations as opposed to other firms and sectors
- The effect of usual drivers of innovation output differs systematically between environmental innovations and other innovations
- Environmental innovations generally have insignificant or negative effect on productivity while other innovations have a strong positive effect => crowding out!
- Crowding out is more severe for polluting firms

- Innovation output of Italian polluting firms and sectors is significantly biased towards environmental innovations as opposed to other firms and sectors
- The effect of usual drivers of innovation output differs systematically between environmental innovations and other innovations
- Environmental innovations generally have insignificant or negative effect on productivity while other innovations have a strong positive effect => crowding out!
- Crowding out is more severe for polluting firms

- Innovation output of Italian polluting firms and sectors is significantly biased towards environmental innovations as opposed to other firms and sectors
- The effect of usual drivers of innovation output differs systematically between environmental innovations and other innovations
- Environmental innovations generally have insignificant or negative effect on productivity while other innovations have a strong positive effect ⇒ crowding out!
- Crowding out is more severe for polluting firms

- Innovation output of Italian polluting firms and sectors is significantly biased towards environmental innovations as opposed to other firms and sectors
- The effect of usual drivers of innovation output differs systematically between environmental innovations and other innovations
- Environmental innovations generally have insignificant or negative effect on productivity while other innovations have a strong positive effect ⇒ crowding out!
- Crowding out is more severe for polluting firms

THANK YOU FOR YOUR ATTENTION

giovanni.marin@imtlucca.it

Extended CDM - Pollution and waste

Table: Second step: Patent equation (Env = pollution and waste patents)

Full s	ample	Pat	ent	Poll	uter
No_env	Env	No_env	Env	No_env	Env
0.267	-0.279	0.352***	0.329	1.006**	0.411
(0.201) 1.236***	(0.364) 0.731***	(0.0731) 0.457***	(0.294) 0.293***	(0.420) 1.345***	(1.132) 0.834*
(0.132) 0.108	(0.217) 0.417	(0.0285) 0.134**	(0.109) 0.243	(0.181) -0.0213	(0.502) 3.113**
(0.143)	(0.372) 1.521*	(0.0590)	(0.283) 0.900**	(0.411)	(1.314) 1.103***
	(0.844) 0.550		(0.453) 0.344		(0.370) 0.150
	(0.611) -0.649		(0.411) -0.654		(0.449) -1.710***
	(0.718) -0.122		(0.469) 0.188		(0.657) 0.777
	(0.592) 2.029***		(0.540) 1.663*		(0.482) 1.830*
	(0.756) -0.290		(0.949) 0.367		(1.087) -2.496***
-9.457*** (0.962)	(0.309) -12.47*** (2.206)	-2.430*** (0.361)	(0.270) -6.309*** (1.665)	-9.593*** (2.336)	(0.776) -25.98*** (7.394)
3193.5	383.8	1297.4	55.89	448.3	3907.3
-28627.1	-1313.1	-9605.4	-839.7	-2173.2	0.825 -122.8 6413
	0.267 (0.201) 1.236*** (0.132) 0.108 (0.143) -9.457*** (0.962) 3193.5 10.36	0.267	No_env Env No_env 0.267	No_env Env No_env Env 0.267	No_env

Extended CDM - Pollution and waste

Table: Third step: productivity equation (Env = pollution and waste patents)

	Full sample			tent	Polluter
Dep: In(VA/L)	(1)	(2)	(1)	(2)	(1)
In(K/L)	0.115***	0.114***	0.101***	0.0994***	0.194***
In(no_env/L)*	(0.00136) 0.598*** (0.0266)	(0.00135) 0.612*** (0.0283)	(0.00689) 0.358*** (0.0672)	(0.00680) 0.291*** (0.0690)	(0.00823) 0.0687*** (0.0243)
In(env/L)*	-0.0797*** (0.00899)	-0.0873*** (0.00977)	0.0671*** (0.0246)	0.0941*** (0.0266)	0.00434 (0.00385)
polluter × In(env/L)*	, ,	0.0562*** (0.0114)		-0.0428*** (0.0147)	
polluter		0.757*** (0.134)		-0.321** (0.138)	
In(L)	-0.0155*** (0.00302)	-0.0202*** (0.00303)	0.325*** (0.0467)	0.296*** (0.0473)	0.0473*** (0.00498)
Constant	7.241*** (0.132)	7.286*** (0.136)	4.160*** (0.136)	4.234*** (0.141)	3.654*** (0.215)
Net effect for polluter		-0.0311*** (0.0143)		0.0513** (0.0248)	
R sq F N	0.213 1564.1 243293	0.214 1413.2 243293	0.183 56.70 5694	0.186 58.26 5694	0.322 118.1 6413

Extended CDM - Renewable energy

Table: Second step: Patent equation (Env = renewable energy patents)

	Full s	ample	Pat	tent	Pol	uter
	No_env	Env	No_env	Env	No_env	Env
In(R&D/L)*	0.265	0.108	0.343***	1.126***	0.870**	3.106**
In(L)	(0.200) 1.233***	(0.366) 1.023***	(0.0724) 0.454***	(0.287) 0.620***	(0.417) 1.282***	(1.321) 2.091***
(2)	(0.132)	(0.222)	(0.0284)	(0.109)	(0.179)	(0.662)
In(reg_pat_stock_pc)	0.135	-0.563*	0.158***	-0.745***	0.0393	1.539
(844)	(0.144)	(0.300)	(0.0584)	(0.245)	(0.407)	(0.945)
Poll (air)	(- /	0.0137	(, , , ,	-0.0280	()	0.312
` '		(0.481)		(0.344)		(0.422)
Poll (water)		-0.0411		-0.213		-0.222
, ,		(0.611)		(0.230)		(0.366)
Poll (haz_waste)		0.236		-0.345		15.48
		(0.497)		(0.356)		-
Poll (no haz waste)		0.125		0.544		0.406
		(0.525)		(0.387)		(0.446)
Poll (other)		-18.76***		-19.56***		1.855
		(0.640)		(0.897)		(1.192)
Polluting_sect		-0.716**		0.000406		-0.260
		(0.357)		(0.360)		(1.159)
Constant	-9.607***	-8.051***	-2.566***	-2.149	-9.591***	-42.82***
	(0.966)	(1.963)	(0.359)	(1.587)	(2.314)	(5.788)
Chi sq	3183.7	1297.7	1279.8	664.0	405.5	-
alpha	10.23	54.95	0.232	8.721	11.19	1.115
Log likelihood	-28606.7	-1457.4	-9573.2	-933.4	-2184.7	-129.5
N	243293	243293	5694	5694	6413	6413

Extended CDM - Renewable energy

Table: Third step: productivity equation (Env = $\underline{\text{renewable energy patents}}$)

	Full sample		Patent		Polluter
Dep: In(VA/L)	(1)	(2)	(1)	(2)	(1)
In(K/L)	0.118***	0.116***	0.101***	0.0985***	0.186***
In(no_env/L)*	(0.00134) 0.354***	(0.00133) 0.347***	(0.00685) 0.432***	(0.00674) 0.394***	(0.00853) 0.114***
(, -)	(0.0112)	(0.0109)	(0.0692)	(0.0726)	(0.0338)
In(env/L)*	-0.0119**	-0.0181***	0.00603	0.0130	0.00403***
polluter ×	(0.00555)	(0.00472) 0.0131*	(0.0125)	(0.0140) -0.00765	(0.00118)
In(env/L)*		(0.00737)		(0.0138)	
polluter		0.266***		-0.00812	
In(L)	0.00654***	(0.0849) 0.00293	0.325***	(0.127) 0.302***	0.0507***
III(L)	(0.00192)	(0.00193)	(0.0452)	(0.0467)	(0.00528)
Constant	6.046***	5.935***	3.974***	3.975***	4.030***
	(0.126)	(0.114)	(0.0956)	(0.0956)	(0.271)
Net effect		-0.0050	1	0.0053	1
for polluter		(0.0076)	ļ	(0.0151)	
R sq	0.211	0.213	0.182	0.184	0.323
F	1565.4	1413.8	54.38	51.92	116.4
N	243293	243293	5694	5694	6413