Objectives and motivation	Model and data	Results	Conclusions	Appendix

Do Eco-Innovations Harm Productivity Growth through Crowding Out? Results of an Extended CDM Model for Italy

Giovanni Marin¹

¹IMT Institute for Advanced Studies Lucca

EAERE 2012, Prague, 27-30 June 2012

Objectives and motivation ●000	Model and data	Results	Conclusions O	Appendix 0000000
Outline of the p	baper			

- Description of (eco-)innovation patterns of Italian manufacturing firms, with a specific focus on eco-innovations
- Assessment of the effect of eco-innovations on firms' productivity \Rightarrow potential crowding-out
- Structural empirical model (**CDM model**) to describe innovation patterns at the firm level
- Use of administrative data (balance sheet, patent applications)
- Bad news ⇒ crowding out seems to exist and to be particularly severe for polluting firms

Objectives and motivation ●000	Model and data	Results	Conclusions O	Appendix 0000000
Outline of the p	baper			

- Description of (eco-)innovation patterns of Italian manufacturing firms, with a specific focus on eco-innovations
- Assessment of the effect of eco-innovations on firms' productivity \Rightarrow potential crowding-out
- Structural empirical model (CDM model) to describe innovation patterns at the firm level
- Use of administrative data (balance sheet, patent applications)
- <u>Bad news</u> ⇒ crowding out seems to exist and to be particularly severe for polluting firms

Objectives and motivation ●000	Model and data	Results	Conclusions O	Appendix 0000000
Outline of the p	baper			

- Description of (eco-)innovation patterns of Italian manufacturing firms, with a specific focus on eco-innovations
- Assessment of the effect of eco-innovations on firms' productivity \Rightarrow potential crowding-out
- Structural empirical model (CDM model) to describe innovation patterns at the firm level
- Use of administrative data (balance sheet, patent applications)
- Bad news ⇒ crowding out seems to exist and to be particularly severe for polluting firms

Objectives and motivation OOOO	Model and data	Results 00000	Conclusions	Appendix 0000000
Eco-innovations:	role and defin	ition		

Kemp and Pearson (2007) define eco-innovation as:

[...] "the production, assimilation or exploitation of a product, production process, service or management or business method that is novel to the organisation (developing or adopting it) and which results, throughout its life cycle, in a reduction of environmental risk, pollution and other negative impacts of resources use (including energy use) compared to relevant alternatives."

- Eco-innovation (creation and diffusion) is **crucial** to achieve **sustainability** (together with structural change)
- Why should firm eco-innovate? ⇒ room for environmental policies

Objectives and motivation OOOO	Model and data	Results 00000	Conclusions	Appendix 0000000
Eco-innovations:	role and defin	ition		

Kemp and Pearson (2007) define eco-innovation as:

[...] "the production, assimilation or exploitation of a product, production process, service or management or business method that is novel to the organisation (developing or adopting it) and which results, throughout its life cycle, in a reduction of environmental risk, pollution and other negative impacts of resources use (including energy use) compared to relevant alternatives."

- Eco-innovation (creation and diffusion) is **crucial** to achieve **sustainability** (together with structural change)
- Why should firm eco-innovate? \Rightarrow room for environmental policies_

- R&D projects are generally financed by means of internal (limited) financial resources (Hall, 2002) ⇒ high risk, asymmetric information between entrepreneurs and banks
- R&D performed to obtain eco-innovations might crowd-out general R&D employed in other (possibly more profitable) projects (Popp and Newell, 2009)
- If crowding out occurs, eco-innovations will have a lower positive effect on productivity than other innovations or even a insignificant or negative effect

- R&D projects are generally financed by means of internal (limited) financial resources (Hall, 2002) ⇒ high risk, asymmetric information between entrepreneurs and banks
- R&D performed to obtain eco-innovations might crowd-out general R&D employed in other (possibly more profitable) projects (Popp and Newell, 2009)
- If crowding out occurs, eco-innovations will have a **lower positive effect** on productivity than other innovations or even a **insignificant** or **negative** effect

Porter hypothesis (Porter and Van der Linde, 1995)

- Policies induce eco-innovations (weak version)
- Policy-induced eco-innovations might have strong positive effects on competitiveness and, possibly, on measured productivity (strong version)
- Regulation as a signal for unexploited resource efficiency and technological possibilities
- Regulation reduces the uncertainty about the value of investments in environmental innovations
- Early regulation in view of future adoption of stringent standards also by competitors might give rise to first mover advantages

Porter hypothesis (Porter and Van der Linde, 1995)

- Policies induce eco-innovations (weak version)
- Policy-induced eco-innovations might have strong positive effects on competitiveness and, possibly, on measured productivity (strong version)
- Regulation as a signal for unexploited resource efficiency and technological possibilities
- Regulation reduces the uncertainty about the value of investments in environmental innovations
- Early regulation in view of future adoption of stringent standards also by competitors might give rise to **first mover advantages**

- The **CDM** (Crepon, Duguet and Mairesse, 1998 NBER WP) model is an **empirical structural model** aimed at describing innovation patterns at the **firm level**
- Three steps: (i) determinants of innovation inputs (R&D) ⇒ (ii) determinants of innovation output (product-process innovations, innovative sales, patent applications) ⇒ (iii) effect of innovation output on productivity
- Sort of **IV approach** to account for endogeneity arising from actual **simultaneity** of firms' decisions and from possible **reverse causality**

R&D equation

- Which are the drivers of innovation (input) intensity of firms?
- Few firms report R&D expenditure ⇒ firms perform formal R&D only if the expected returns pass an unobservable threshold ⇒ Heckman sample selection model for R&D intensity

Innovation equation(s)

- Knowledge production function \Rightarrow patent applications count
- (Predicted) innovation **inputs** (R&D from the first step) and **other factors**
- Negative Binomial (NB2) model to account for overdispersion

Productivity equation

- Extended production function ⇒ (predicted) patent intensity
- OLS allowing for non-constant returns to scale

R&D equation

- Which are the drivers of innovation (input) intensity of firms?
- Few firms report R&D expenditure ⇒ firms perform formal R&D only if the expected returns pass an unobservable threshold ⇒ Heckman sample selection model for R&D intensity

Innovation equation(s)

- $\bullet~$ Knowledge production function \Rightarrow patent applications count
- (Predicted) innovation **inputs** (R&D from the first step) and **other factors**
- Negative Binomial (NB2) model to account for overdispersion

Productivity equation

- Extended production function ⇒ (predicted) patent intensity
- OLS allowing for non-constant returns to scale

R&D equation

- Which are the drivers of innovation (input) intensity of firms?
- Few firms report R&D expenditure ⇒ firms perform formal R&D only if the expected returns pass an unobservable threshold ⇒
 Heckman sample selection model for R&D intensity

Innovation equation(s)

- $\bullet~$ Knowledge production function \Rightarrow patent applications count
- (Predicted) innovation **inputs** (R&D from the first step) and **other factors**
- Negative Binomial (NB2) model to account for overdispersion

Productivity equation

- Extended production function \Rightarrow (predicted) patent intensity
- OLS allowing for non-constant returns to scale

Objectives and motivation	Model and data ○○●○○○	Results 00000	Conclusions	Appendix 0000000
Extension to the	CDM model			

- Distinction between environmental patent applications and other applications ⇒ two distinct patent equations and separate effect on productivity
- Is the effect of eco-innovation on productivity homogeneous for all firms? ⇒ check whether the effect differs systematically for firms with big polluting plants?

Objectives and motivation	Model and data ○○○●○○	Results 00000	Conclusions	Appendix 0000000
Data sources				

- Balance sheet information from AIDA (Bureau van Dijk) for about 73k Italian manufacturing firms in 2000-2007
- Patent applications to the European Patent Office (EPO) from PATSTAT (for matching procedure, Marin, 2011) ⇒ about 4k EPO applicants and 18k EPO applications ⇒ environmental patents identified according to their IPC class (OECD, WIPO)
- Firms with **polluting plants** were identified through the **E-PRTR** and **EPER** registries for big polluting plants (European Environment Agency)

Objectives and motivation	Model and data ○○○○●○	Results 00000	Conclusions	Appendix 0000000
Description of th	e samples			

- Exclusion of very big (5000 employees) and very small (10 employees) firms
- Exclusion of **outlier** observations
- Focus on three samples:
 - full sample \Rightarrow 243,293 observations
 - \bullet patent sample \Rightarrow only observations with positive patent applications \Rightarrow 5,694 observations
 - **polluter** sample \Rightarrow only polluting (EPER, E-PRTR) firms \Rightarrow **6,413** observations

Objectives and motivation	Model and data ○○○○●○	Results 00000	Conclusions	Appendix 0000000
Description of	the samples			

- Exclusion of very big (5000 employees) and very small (10 employees) firms
- Exclusion of **outlier** observations
- Focus on three samples:
 - full sample \Rightarrow 243,293 observations
 - patent sample \Rightarrow only observations with positive patent applications \Rightarrow 5,694 observations
 - polluter sample \Rightarrow only polluting (EPER, E-PRTR) firms \Rightarrow 6,413 observations

Again, eco-innovation is defined (Kemp and Pearson, 2007) as:

"the production, assimilation or exploitation of a product, production process, service or management or business method that is novel to the organisation (developing or adopting it) and which results, throughout its life cycle, in a reduction of environmental risk, pollution and other negative impacts of resources use (including energy use) compared to relevant alternatives."

However, Calel and Dechezlepretre (2012) claim that

"economic theory predicts that environmental regulations would produce greater incentive to develop new technologies for directly regulated firms than for third-party technology suppliers because the latter are not discharging emissions themselves and receive no private benefit from the new technology"

Again, eco-innovation is defined (Kemp and Pearson, 2007) as:

"the production, assimilation or exploitation of a product, production process, service or management or business method that is novel to the organisation (developing or adopting it) and which results, throughout its life cycle, in a reduction of environmental risk, pollution and other negative impacts of resources use (including energy use) compared to relevant alternatives."

However, Calel and Dechezlepretre (2012) claim that

"economic theory predicts that environmental regulations would produce greater incentive to develop new technologies for directly regulated firms than for third-party technology suppliers because the latter are not discharging emissions themselves and receive no private benefit from the new technology"

Objectives and motivation	Model and data	Results •0000	Conclusions	Appendix 0000000
Is there a bias?				

Table: Probability of filing for an environmental patent (patent sample)

All_env	(1)	(2)	(3)	(4)
Polluter	0.0825*** (0.0186)	0.0879*** (0.0189)	0.0275* (0.0155)	0.0173 (0.0149)
Polluting_sector	0.0115 (0.0139)	0.00918 (0.0137)	0.0322* (0.0170)	0.0437** (0.0177)
Polluter	0.0819*** (0.0187)	0.0878*** (0.0191)	0.0239 (0.0154)	0.0124 (0.0146)
Polluting_sector	0.00320 (0.0134)	0.000331 (0.0132)	(0.0154) 0.0287* (0.0169)	(0.0140) 0.0417** (0.0177)
Year d.	-	Yes	Yes	Yes
Macro_reg d.	-	Yes	Yes	Yes
Size (In(L))	-	-	Yes	Yes
Pavitt d.	-	-	Yes	Yes
Class_patent d.	-	-	-	Yes
N	5694	5694	5694	5694

Probit estimates, marginal effects are shown

Objectives and motivation	Model and data	Results	Conclusions	Appendix
		00000		

Table: First step: R&D equation

	Full s	Full sample Patent		tent	Pol	uter
Dep: In(R&D/L)	OLS	Heckman	OLS	Heckman	OLS	Heckman
In(L)	-0.0992*** (0.0142)	-0.685*** (0.0239)	-0.180*** (0.0258)	-0.433*** (0.0340)	-0.103*** (0.0395)	-0.474*** (0.0460)
Market_sh	0.855***	2.516***	`0.995*´	2.801***	0.215	`0.506*´
In(K/L)	(0.283) 0.128*** (0.0126)	(0.343) 0.00818 (0.0138)	(0.513) 0.139*** (0.0337)	(0.634) 0.102*** (0.0380)	(0.261) 0.328*** (0.0420)	(0.299) 0.184*** (0.0456)
Constant	-1.319*** (0.0797)	3.230*** (0.163)	-0.386* (0.222)	1.827*** (0.269)	-2.215*** (0.270)	1.781*** (0.354)
Selection eq.	Full s	ample	Pat	tent	Pol	uter
In(L)		0.143***		-0.0758		0.0905**
Market_sh		(0.0114) -1.847***		(0.0515) -2.081***		(0.0357) -0.350**
		(0.212)		(0.328)		(0.165)
In(K/L)		-0.0234***		-0.0461**		0.0154
In(book_value)		(0.00585) 0.426***		(0.0210) 0.378***		(0.0241) 0.234***
,		(0.00987)		(0.0458)		(0.0315)
Age> 10		0.0212*		0.0683		-0.0834**
Constant		(0.0126) -4.658***		(0.0486) -2.742***		(0.0388) -2.884***
		(0.0568)		(0.243)		(0.157)
Chi sq		1235.0		239.2		284.1
sigma rho		2.407		2.193		2.492
rno Iambda		-0.731 -1.758		-0.808 -1.771		-0.803 -2.002
Chi sq (rho)		1112.1***		224.1***		201.6***
Log likelihood	-162806.1	-283964.1	-8257.8	-11200.0	-7206.1	-11060.6
N	77470	243293	4052	5694	3415	6413

Objectives and motivation	Model and data	Results	Conclusions	Appendix
		00000		

Table: Second step: Patent equation (Env = all environmental patents)

	Full s	ample	Pat	ent	Poll	uter
	No_env	Env	No_env	Env	No_env	Env
$ln(\widehat{R\&D/L})$	0.248 (0.200)	0.272 (0.319)	0.328*** (0.0726)	0.812*** (0.201)	0.947** (0.425)	2.421*** (0.892)
In(L)	1.222***	1.215***	0.446***	0.612***	1.315***	1.933***
	(0.131)	(0.207)	(0.0286)	(0.0774)	(0.180)	(0.454)
In(reg_pat_stock_pc)	0.139	-0.0768	0.159***	-0.213	-0.00723	1.216**
	(0.148)	(0.215)	(0.0602)	(0.155)	(0.407)	(0.497)
Constant	-9.629***	-10.70***	-2.578***	-4.012***	-9.560***	-20.34***
	(0.986)	(1.482)	(0.373)	(0.935)	(2.329)	(3.687)
Chi sq	3152.1	701.4	1164.2	207.3	430.3	2013.8
alpha	10.43	28.38	0.245	3.898	11.01	14.40
Log likelihood	-27620.1	-3807.6	-9457.4	-2252.6	-2086.0	-428.6
N	243293	243293	5694	5694	6413	6413

Objectives and motivation	Model and data	Results ○○○●○	Conclusions	Appendix 0000000

Table: Third step: productivity equation (separate effect for env and no_env)

	Full s	ample	Pat	ent	Pol	luter
Dep: In(VA/L)	(1)	(2)	(1)	(2)	(1)	(2)
In(K/L)	0.1184*** (0.0013) 0.3868*** (0.0112)	0.1215*** (0.0013)	0.1028*** (0.0067) 0.4114*** (0.0672)	0.1028*** (0.0072)	0.194*** (0.0082) 0.0688*** (0.0253)	0.211*** (0.0071)
In(Env/L) In(L) Constant	0.0052*** (0.0019) 6.4556*** (0.0926)	0.0266*** (0.0049) 0.0356*** (0.0017) 3.5538*** (0.0514)	0.3075*** (0.0455) 3.9348*** (0.0906)	0.1449*** (0.0289) 0.1273*** (0.0196) 4.0052*** (0.1254)	0.046*** (0.0048) 3.610*** (0.2071)	-0.0154*** (0.0053) 0.0357*** (0.0042) 2.885*** (0.0685)
R sq F N	0.2109 1662.51 243293	0.2021 1589.53 243293	0.1814 56.64 5694	0.1792 55.88 5694	0.3215 123.09 6413	0.3217 120.94 6413

Objectives and motivation	Model and data	Results 0000●	Conclusions O	Appendix 0000000

Table: Third step: productivity equation (Env = all environmental patents)

	Full s	ample	Patent		Polluter
Dep: In(VA/L)	(1)	(2)	(1)	(2)	(1)
ln(K/L)	0.117***	0.115***	0.0975***	0.0975***	0.198***
	(0.00133)	(0.00133)	(0.00724)	(0.00708)	(0.00836)
$ln(no_env/L)$	0.420***	0.433***	0.328***	0.303***	0.0676***
	(0.0131)	(0.0132)	(0.0807)	(0.0802)	(0.0253)
$\widehat{ln(env/L)}$	-0.0308***	-0.0455***	0.0824**	0.0733**	-0.0152***
(, , ,	(0.00552)	(0.00568)	(0.0347)	(0.0351)	(0.00534)
$\widehat{ln(env/L)}$ × polluter	(,	-0.0183*	(-0.0383**	(,
m(env/E) × ponuter		(0.0101)		(0.0183)	
polluter		-0.0521		-0.228	
ponucci		(0.0997)		(0.139)	
In(L)	0.00510***	0.000740	0.307***	0.280***	0.0421***
(ב)	(0.00194)	(0.00196)	(0.0465)	(0.0472)	(0.00493)
Constant	6.409***	6.377***	4.156***	4.111***	3.439***
constant	(0.0924)	(0.0925)	(0.128)	(0.130)	(0.221)
Net effect	1	-0.0639***		0.0340	
for polluter		(0.0109)		(0.0396)	
loi politici	1	(1	(1.10000)	1
R sq	0.211	0.214	0.183	0.184	0.322
F	1564.6	1413.6	54.97	55.88	113.0
N	243293	243293	5694	5694	6413

Objectives and motivation	Model and data	Results 00000	Conclusions •	Appendix 0000000
Conclusions				

- Innovation output of Italian polluting firms and sectors is significantly biased towards environmental innovations as opposed to other firms and sectors
- The effect of usual drivers of innovation output differs systematically between environmental innovations and other innovations
- Environmental innovations generally have insignificant or negative effect on productivity while other innovations have a strong positive effect ⇒ crowding out?
- Crowding out is more severe for polluting firms

Objectives and motivation	Model and data	Results 00000	Conclusions •	Appendix 0000000
Conclusions				

- Innovation output of Italian polluting firms and sectors is significantly biased towards environmental innovations as opposed to other firms and sectors
- The effect of usual drivers of innovation output differs systematically between environmental innovations and other innovations
- Environmental innovations generally have insignificant or negative effect on productivity while other innovations have a strong positive effect ⇒ crowding out?
- Crowding out is more severe for polluting firms

Objectives and motivation	Model and data	Results 00000	Conclusions •	Appendix 0000000
Conclusions				

- **Innovation output** of Italian **polluting** firms and sectors is significantly **biased** towards environmental innovations as opposed to other firms and sectors
- The effect of usual drivers of innovation output differs systematically between environmental innovations and other innovations
- Environmental innovations generally have insignificant or negative effect on productivity while other innovations have a strong positive effect ⇒ crowding out?
- Crowding out is more severe for polluting firms

Objectives and motivation	Model and data	Results 00000	Conclusions •	Appendix 0000000
Conclusions				

- **Innovation output** of Italian **polluting** firms and sectors is significantly **biased** towards environmental innovations as opposed to other firms and sectors
- The effect of usual drivers of innovation output differs systematically between environmental innovations and other innovations
- Environmental innovations generally have insignificant or negative effect on productivity while other innovations have a strong positive effect ⇒ crowding out?
- Crowding out is more severe for polluting firms

Objectives and motivation	Model and data	Results	Conclusions	Appendix
0000	000000	00000		0000000

THANK YOU FOR YOUR ATTENTION

Objectives and motivation	Model and data	Results	Conclusions	Appendix
				000000

Sector	Full sample	Patent sample	Perc w/pat	Polluter sample	Perc pollut
DA (food & beverage)	18245	88	0.48%	348	1.91%
DB (textile)	19812	135	0.68%	283	1.43%
DC (leather)	8115	67	0.83%	81	1.00%
DD (wood)	6212	23	0.37%	78	1.26%
DE (paper & printing)	15434	103	0.67%	481	3.12%
DF-DG (petro-chemical)	11082	520	4.69%	1058	9.55%
DH (rubber & plastic)	14173	465	3.28%	181	1.28%
DI (non-metalic mineral prod.)	14461	111	0.77%	849	5.87%
DJ (basic metal prod.)	52915	942	1.78%	2244	4.24%
DK (machinery & equipment)	35990	1843	5.12%	216	0.60%
DL (electrical & optical)	21657	914	4.22%	187	0.86%
DM (transport equipment)	6698	227	3.39%	127	1.90%
DN (manuf. n.e.c.)	18499	256	1.38%	280	1.51%
Scale intensive manufacturing	88946	1752	1.97%	3452	3.88%
Science based manufacturing	26006	1110	4.27%	1192	4.58%
Specialized suppliers manufacturing	42024	2160	5.14%	218	0.52%
Supplier dominated goods	86317	672	0.78%	1551	1.80%
Total	243293	5694	2.34%	6413	2.64%

Table: Distribution by sector

Objectives and motivation	Model and data	Results 00000	Conclusions	Appendix ○●○○○○○

Variable	Mean	Q1	Median	Q3	Min	Max	SD/mear
		Full	sample				
Book value	13478	1800	3608	8392	113.7	7795221	5.36
Employees	63.8	15	26	50	10	4985	2.919
Fixed physical assets per employee	37.41	9.144	22.49	47.64	.6339	472.5	1.228
Value added per employee	47.21	33.23	41.32	54.21	10.2	237.2	.4831
Age	20.05	11	18	26	0	107	.6629
Market share	0.0077	0.0005	0.0013	0.0039	0	1	4.5426
R&D per employee	1.937	.08979	.3252	1.198	2.18e-06	529.7	4.193
Perform R&D (d.)	.3184	0	0	1	0	1	1.463
Regional patent stock pc	.539	.3602	.5676	.7812	.01131	.8801	.4869
		Pater	nt sample				
Total patents	2.092	1	1	2	1	44	1.461
Environmental patents (all)	.1507	0	0	0	0	25	4.498
Pollution and waste patents	.03548	0	0	0	0	3	6.057
Renewable energy patents	.04689	0	0	0	0	25	8.895

Table: Descriptive statistics

Objectives and motivation	Model and data	Results 00000	Conclusions	Appendix 00●0000
Extended CDM -	Pollution and	waste		

Table: Second step: Patent equation (Env = pollution and waste patents)

	Full sample		Patent		Polluter	
	No_env	Env	No_env	Env	No_env	Env
$ln(\widehat{R\&D/L})$	0.267 (0.201)	-0.279 (0.364)	0.352*** (0.0731)	0.329 (0.294)	1.006** (0.420)	0.411 (1.132)
In(L)	1.236***	0.731***	0.457***	0.293***	1.345***	0.834*
	(0.132)	(0.217)	(0.0285)	(0.109)	(0.181)	(0.502)
ln(reg_pat_stock_pc)	0.108	0.417	0.134**	0.243	-0.0213	3.113**
	(0.143)	(0.372)	(0.0590)	(0.283)	(0.411)	(1.314)
Constant	-9.457***	-12.47***	-2.430***	-6.309***	-9.593***	-25.98***
	(0.962)	(2.206)	(0.361)	(1.665)	(2.336)	(7.394)
Chi sq	3193.5	383.8	1297.4	55.89	448.3	3907.3
alpha	10.36	46.33	0.238	6.530	11.21	0.825
Log likelihood	-28627.1	-1313.1	-9605.4	-839.7	-2173.2	-122.8
N	243293	243293	5694	5694	6413	6413

Objectives and motivation	Model and data	Results 00000	Conclusions O	Appendix ○○○●○○○
Extended CDM -	Pollution and	waste		

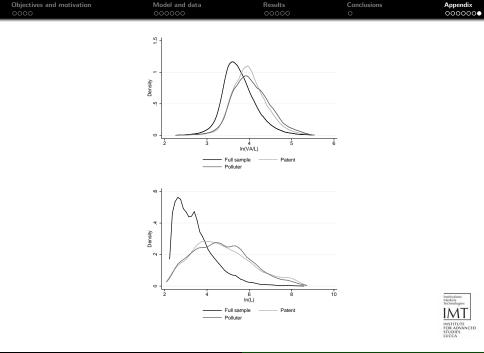
Table: Third step: productivity equation (Env = pollution and waste patents)

	Full s	Full sample		Patent	
Dep: In(VA/L)	(1)	(2)	(1)	(2)	(1)
ln(K/L)	0.115***	0.114***	0.101***	0.0994***	0.194***
-	(0.00136)	(0.00135)	(0.00689)	(0.00680)	(0.00823)
$ln(no_env/L)$	0.598***	0.612***	0.358***	0.291***	0.0687***
	(0.0266)	(0.0283)	(0.0672)	(0.0690)	(0.0243)
ln(env/L)	-0.0797***	-0.0873***	0.0671***	0.0941***	0.00434
(, , ,	(0.00899)	(0.00977)	(0.0246)	(0.0266)	(0.00385)
$\widehat{ln(env/L)} \times polluter$. ,	0.0562***	. ,	-0.0428***	. ,
(, , ,		(0.0114)		(0.0147)	
polluter		0.757***		-0.321**	
		(0.134)		(0.138)	
In(L)	-0.0155***	-0.0202***	0.325***	0.296***	0.0473***
	(0.00302)	(0.00303)	(0.0467)	(0.0473)	(0.00498)
Constant	7.241***	7.286***	4.160***	4.234***	3.654***
	(0.132)	(0.136)	(0.136)	(0.141)	(0.215)
Net effect	1	-0.0311***	1	0.0513**	
for polluter		(0.0143)		(0.0248)	
R sq	0.213	0.214	0.183	0.186	0.322
F	1564.1	1413.2	56.70	58.26	118.1
N	243293	243293	5694	5694	6413

Objectives and motivation	Model and data	Results 00000	Conclusions O	Appendix ○○○○●○○
Extended CDM -	Renewable e	energy		

Table: Second step: Patent equation (Env = renewable energy patents)

	Full sample		Patent		Polluter	
	No_env	Env	No_env	Env	No_env	Env
$ln(\widehat{R\&D/L})$	0.265 (0.200)	0.108 (0.366)	0.343*** (0.0724)	1.126*** (0.287)	0.870** (0.417)	3.106** (1.321)
In(L)	1.233*** (0.132)	1.023*** (0.222)	0.454*** (0.0284)	0.620*** (0.109)	1.282*** (0.179)	2.091*** (0.662)
ln(reg_pat_stock_pc)	0.135 (0.144)	-0.563* (0.300)	0.158*** (0.0584)	-0.745*** (0.245)	0.0393 (0.407)	1.539 (0.945)
Constant	-9.607*** (0.966)	-8.051*** (1.963)	-2.566*** (0.359)	-2.149 (1.587)	-9.591*** (2.314)	-42.82*** (5.788)
Chi sq alpha Log likelihood N	3183.7 10.23 -28606.7 243293	1297.7 54.95 -1457.4 243293	1279.8 0.232 -9573.2 5694	664.0 8.721 -933.4 5694	405.5 11.19 -2184.7 6413	- 1.115 -129.5 6413



Objectives and motivation	Model and data	Results 00000	Conclusions O	Appendix ○○○○○●○
Extended CDM -	Renewable er	nergy		

Table: Third step: productivity equation (Env = renewable energy patents)

	Full sample		Patent		Polluter
Dep: In(VA/L)	(1)	(2)	(1)	(2)	(1)
In(K/L)	0.118***	0.116***	0.101***	0.0985***	0.186***
	(0.00134)	(0.00133)	(0.00685)	(0.00674)	(0.00853)
In(no_env/L)	0.354***	0.347***	0.432***	0.394***	0.114***
	(0.0112)	(0.0109)	(0.0692)	(0.0726)	(0.0338)
ln(env/L)	-0.0119**	-0.0181***	0.00603	0.0130	0.00403***
	(0.00555)	(0.00472)	(0.0125)	(0.0140)	(0.00118)
$\widehat{ln(env/L)} \times polluter$, ,	0.0131*	· · ·	-0.00765	. ,
(, , ,		(0.00737)		(0.0138)	
		0.266***		-0.00812	
		(0.0849)		(0.127)	
In(L)	0.00654***	0.00293	0.325***	0.302***	0.0507***
	(0.00192)	(0.00193)	(0.0452)	(0.0467)	(0.00528)
Constant	6.046***	5.935***	3.974***	3.975***	4.030***
	(0.126)	(0.114)	(0.0956)	(0.0956)	(0.271)
Net effect	1	-0.0050	1	0.0053	1
for polluter		(0.0076)		(0.0151)	
R sq	0.211	0.213	0.182	0.184	0.323
F	1565.4	1413.8	54.38	51.92	116.4
N	243293	243293	5694	5694	6413

