

Factor endowment

Giovanni Marin

Department of Economics, Society, Politics Università degli Studi di Urbino 'Carlo Bo'

References for this lecture

- BBVG
 - Paragraphs 3.4, 3.5, 3.6, 3.7, 3.8
- Further suggested readings:
 - World Trade Report 2010, Chapter C, paragraph 5 (page 91): "The natural resource curse"
 - The Economist "What Dutch disease is, and why it's bad", Nov 5th 2014
 - The New Yorker "Venezuela's "Resource Curse" will outlive Hugo Chavez", Mar 6th 2013

Discussion about Ricardo model

- **Differences** in **productivity** across countries were considered as **exogenous**
 - Why should EU productivity in cloth production differ from USA productivity for the same commodity?
- Critique of economists in the 1930s
 - Improved communication and tighter economic relationships (trade, FDI, travels) across countries have reduced barriers in accessing knowledge
 - Countries have access, potentially, to the same technologies
 - Maybe technology was not that different across countries...

Diffusion of technologies across countries: knowledge spillovers

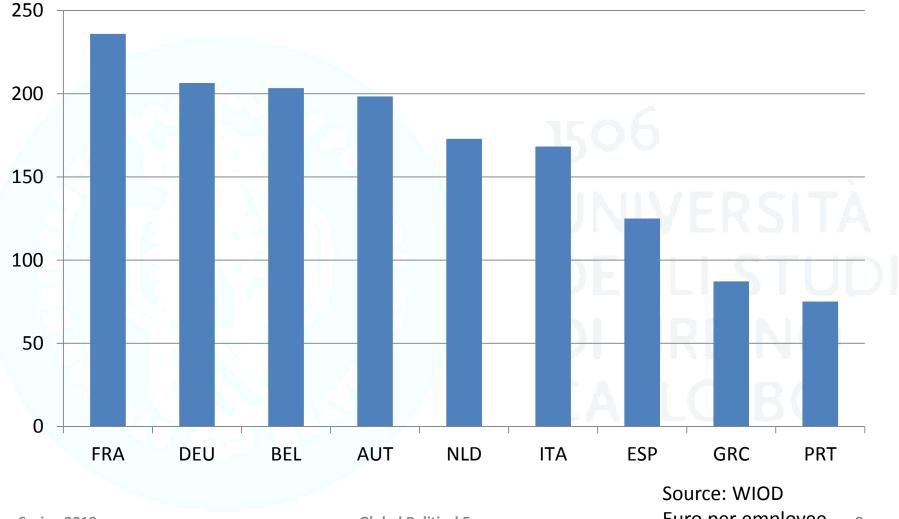
- Knowledge spillovers → (unintentional) diffusion of knowledge across countries
- New technologies are invented and developed in a country
- Other countries learn about these new technologies in many ways:
 - Scientific publications
 - Publication of patents → the patent 'protects' the technology but information on the technology itself is disclosed and made publicly available → imitation
 - Technologies embodied in FDI
 - Trade of commodities that embody new technologies facilitate imitation (e.g. reverse engineering)
 - Media, trade fairs, etc
 - Word of mouth

Is there convergence in productivity?

Productivity convergence in individual industries, 2000-2005 GEO N - GEO LTU 2 NLD SVK BGR ς. <u>_</u> 0 0 IDN Ţ, ETH 7 Ņ URY TUR Ņ ო IRN SGP FRI -3 2 0 2 -4 -1 footwear (isic 1920) plastic products (isic 2520) coef = -.03537392, (robust) se = .01235147, t = -2.86 coef = -.03060542, (robust) se = .01244065, t = -2.46 Q SVK GEO 2 GEO 4 CZF BGR ALB MAC ERI BGR ς. 2 0 IDN 0 JPN 7 Ņ SGP MKD) IRN 2 MKD 4 -2 2 -3 -2 -1 2 0 -4 glass and glass products (isic 2610) furniture (isic 3610) coef = -.06650359, (robust) se = .01678395, t = -3.96 coef = -.02438477, (robust) se = .01185934, t = -2.06

5

Global Political Economy


Knowledge spillovers and absorptive capacity

- Even though access to knowledge has improved substantially, technology does not diffuse immediatly across countries
 - R&D and patenting is very much concentrated in a few advanced countries
 - To adopt a new technologies, the recipient country should be able to incorporate these technologies in its economy
- <u>Absorptive capacity</u> → ability to adopt new technologies (e.g. through knowledge spillovers)
 - Doing R&D at home facilitates the adoption of technologies developed abroad
 - Human capital also trigger the absorption of foreign knowledge

Heckscher-Ohlin-Samuelson model

- The Heckscher-Ohlin-Samuelson (HOS) model departs from the Ricardo model in two respects
 - Technology is now the same in all countries
 - Two inputs are needed for producing commodities
 - Labour
 - Capital
- Countries **differ** in the **endowment** of inputs
- <u>Result</u> → countries specialize in the production of the commodity that is intensive in the input that is relatively abundant in the country

K/L ratio in the manufacturing sector of selected EU countries

Spring 2019

Global Political Economy

Euro per employee 8 Year 2007

- Two inputs of production
 - Labour
 - Capital
- Two homogenous commodities
 - Steel -> capital intensive
 - Cloth → labour intensive

UNIVERSITÀ DEGLI STUDI

Two countries

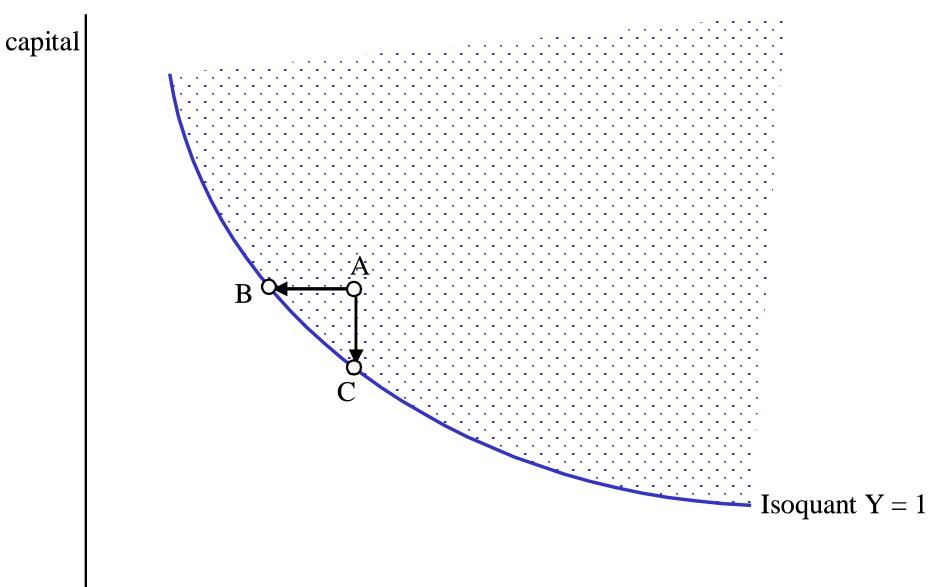
- Country 1 is relatively well endowed with labour (wrt country 2)
- Country 2 is relatively well endowed with capital (wrt country 1)

- Production functions for each commodity in the two countries are identical
 - Steel = $f_1(K,L)=f_2(K,L)=f(K,L)$
 - **Cloth** = $g_1(K,L)=g_2(K,L)=g(K,L)$
- Steel production is relatively more capital intensive than cloth production
 - For a given vector of input prices (wages [w] and rental price of capital [r]), the ratio of capital to labour is greater for steel than for cloth production
- Constant returns to scale in production

- The **relative supply** of **capital** and **labour differs** between the two countries
- Labour and capital are (as labour in Ricardo)
 - Perfectly mobile across sectors within country
 - Perfectly immobile between countries
 strong assumption for capital!
- Consumers' preferences are identical in the two countries
 - For given relative prices of commodities (p_{Steel}/p_{Cloth}), the ratio of steel-to-cloth consumption is the same in the two countries → MRUS₁(steel,cloth)=MRUS₂(steel,cloth)

- There is no barrier to trade (as in the Ricardo model)
- Markets of commodities and inputs are perfectly competitive
 - Producers, workers, capital holders and consumers in all sectors and countries are price takers
 - Perfect competition implies that market prices equal production costs
 zero profits

HOS with closed economy


 Before allowing countries to trade, we evaluate what happens when each country is an autarchy (no import or export)

- All commodities produced at home are consumed at home (no export)
- All commodities consumed at home are produced at home (no import)

Closed economy – production costs

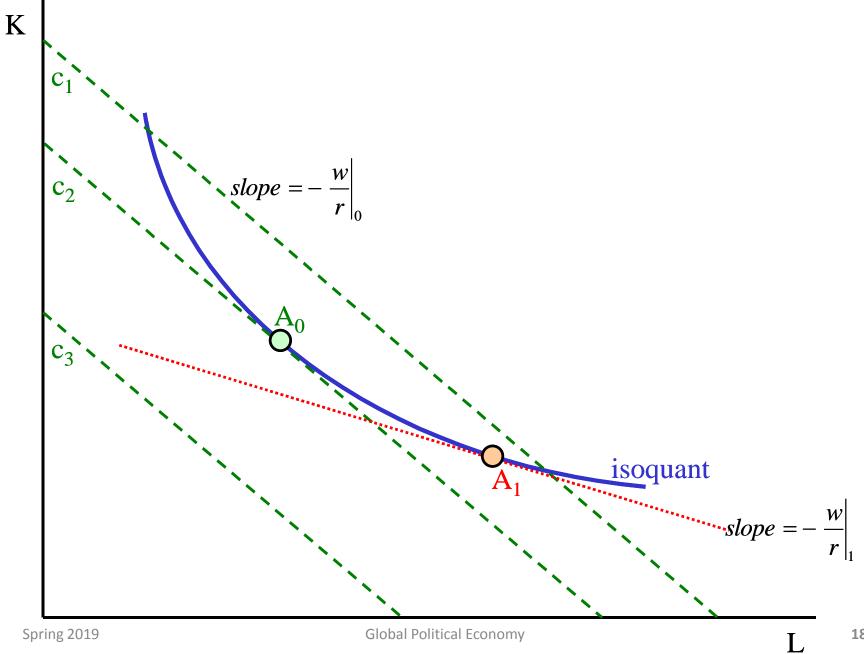
- **Production cost (for one unit of output)** \rightarrow C₁=a_{L1}w+a_{K1}r
 - a_{L1} is the use (not the requirement!) of labour to produce one unit of good 1 (inverse of labour productivity)
 - a_{K1} is the use of capital to produce one unit of good 1 (inverse of capital productivity)
- Why 'use' and not 'requirement' → possible substitution
- <u>Isocost</u> \rightarrow K=C₁/r L*w/r
- Producers can substitute labour with capital (and viceversa) according to the production function → isoquant
- The opportunity cost of steel in terms of cloth is <u>not constant</u>!

Figure 3.4 An isoquant

labor

Production possibility frontier

Cloth

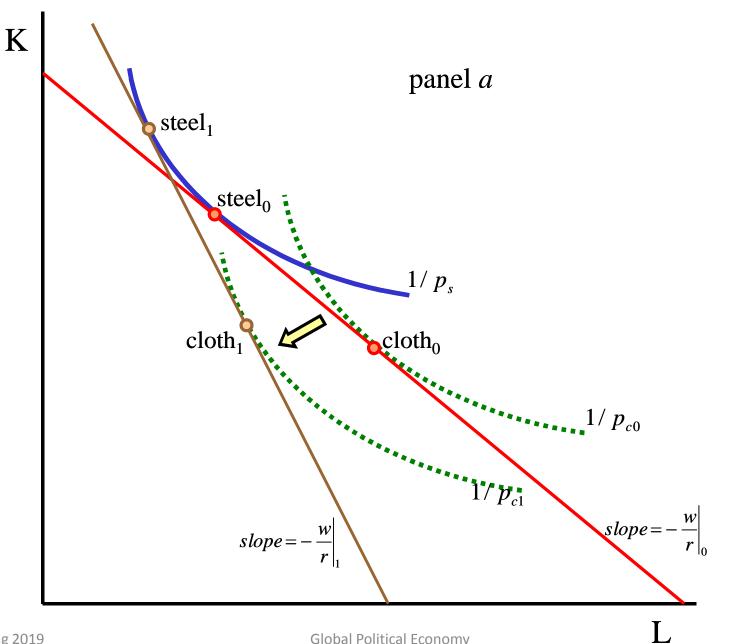

With two inputs and possible substitution of inputs in production, the production possibility frontier is not linear -> opportunity cost is not constant

Steel

Change in input relative prices

- Changes in relative input prices (w/r) determine a movement along the isoquant
 - If w/r increases (i.e. labour becomes relatively more expensive than capital), producers will substitute expensive labour with cheap capital
- Cross-country differences in w/r depend on the relative endowment of capital and labour
 - If labour is relatively (i.e. wrt the other country) more abundant than capital, labour will be relatively cheaper than capital

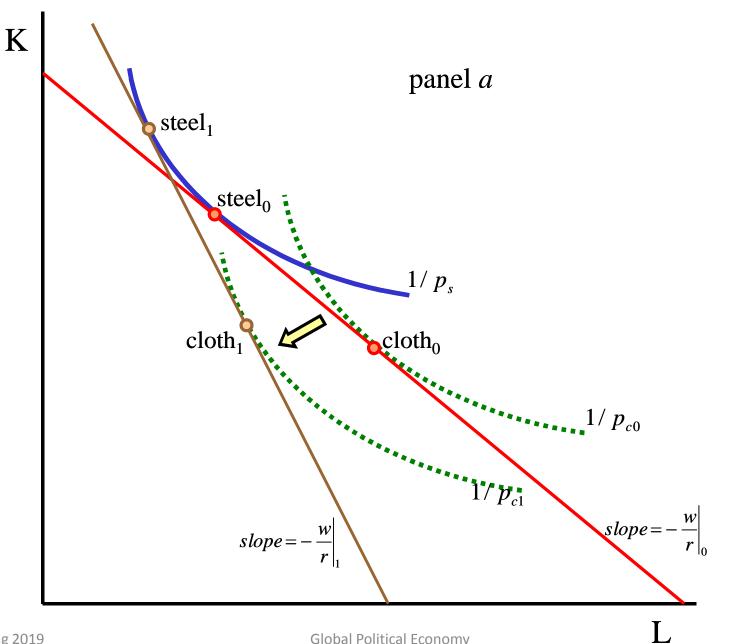
```
Figure 3.5 Cost minimization
```



Allocation of factors to producing commodities

 Input prices (rental price of capital and wage) are the same for both commodities

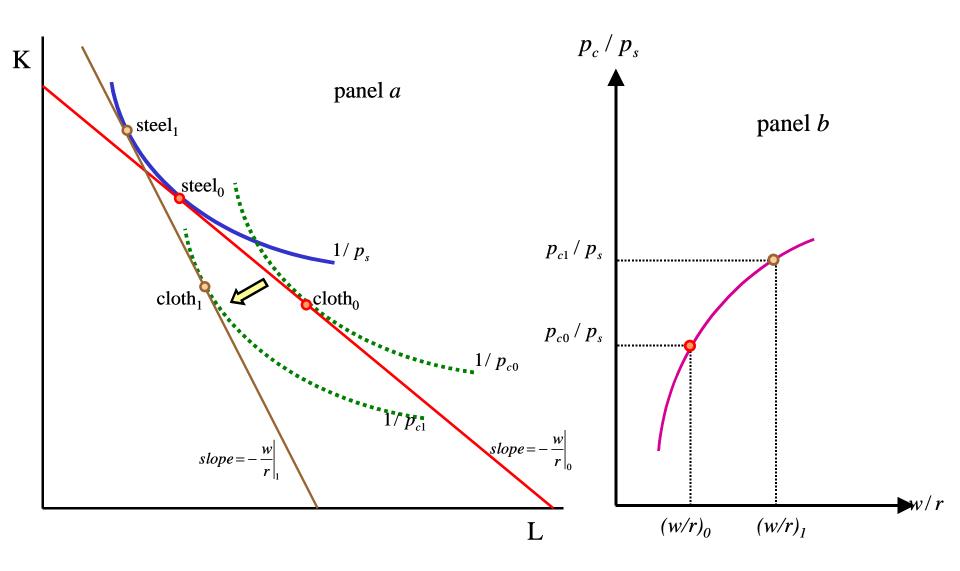
Unit value isoquants

- They represent the production of each good that is worth one dollar of revenue when sold on the market
 q=1/p
- The unit value isoquant is inversely related to the price of a commodity → the more expensive the good, the fewer units are needed to get 1 dollar's worth of revenue


Figure 3.6 Lerner diagram, a goods prices and b factor prices

Equilibrium in closed economy

- If both goods are produced in the closed economy, unit value isoquants for the two products will be tangent to the unit isocost
 - Same input costs for both commodities → optimal production points must lie on the same unit isocost line (where the unit isocost line is an isocost with cost=1 → zero profits!)
- Relative factor intensity → in equilibrium, producing one dollar's worth of steel requires more capital than producing one dollar's worth of cloth


Figure 3.6 Lerner diagram, a goods prices and b factor prices

Simulating a change in output prices

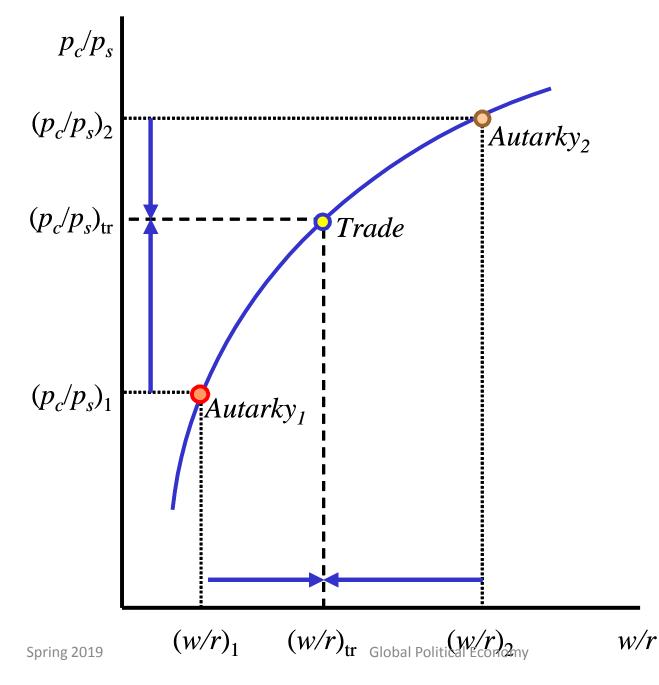
- Example: price of cloth increases
- We need fewer units of cloth to produce one dollar's worth of revenue → unit value isoquant of cloth shifts towards the origin
- Unit cost isocost must rotate clockwise to reach a new equilibrium in which the two unit value isoquants are tangent with the unit value isocost
- Wage rate has increased relative to the rental rate of capital
 - Cloth is labour intensive → higher price of cloth leads to an increased demand of labour and thus to higher wages (given that labour endowment is fixed)
 - Substitution effect → as labour is more expensive, cloth production (but also steel production) has become slightly more capital intensive
- **Relationship** between **good prices** and **factor prices** → <u>Lerner diagram</u>

Figure 3.6 Lerner diagram, a goods prices and b factor prices

Open economy in HOS

- Recall that:
 - Country 1 is relatively well endowed with labour (wrt country 2)
 - Country 2 is relatively well endowed with capital (wrt country 1)
 - Technology (i.e. the production function) is the same in the two countries
 - Production inputs cannot move across countries

Open economy in HOS


- Same technology:
 - Same Lerner diagram in both countries
 - Equilibrium in autarchy for the two countries is located in different points of the (same) Lerner diagram
 - Different points reflect differences in factors' endowment

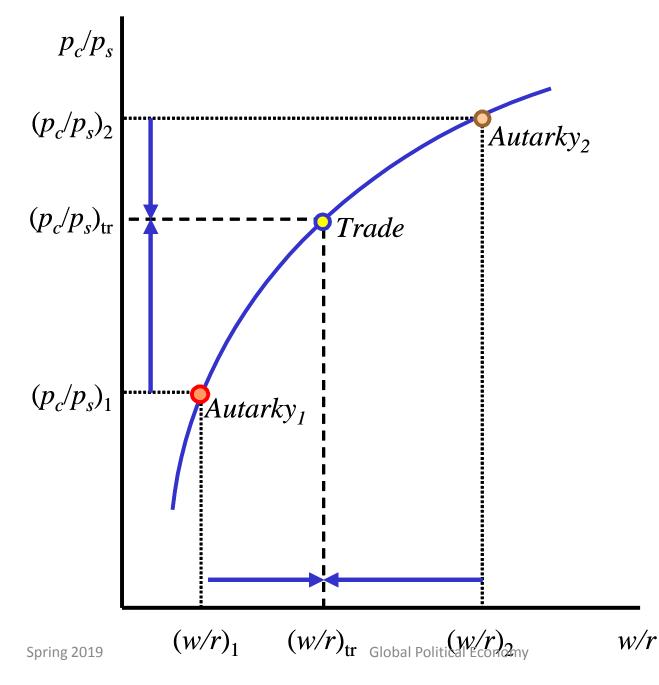
Open economy in HOS

 Country 1 is relatively well endowed with labour while country 2 is relatively well endowed with capital

 In autarchy w/r will be lower in country 1 than in country 2

Figure 3.7 The impact of international trade

28


Trade in HOS

- Trade is costless
- The price of each commodity will be the same in both countries (as in Ricardo)
- This implies that p_c/p_s will be the same worldwide
- In equilibrium, also w/r is the same in both countries

Trade in HOS

- Moving from autarchy to trade
 - Consumers in country 1 (labour abundant) will import the capital-intensive good (steel) from country 2 (capital abundant) as it is cheaper than at home
 - Increased demand for steel in country 2 will increase the demand for capital and will thus increase its price
 - Higher cost of capital results in more costly steel in country 2
 - Consumers in country 2 (capital abundant) will import the labour-intensive good (cloth) from country 1 (labour abundant) as it is cheaper than at home
 - Increased demand for cloth in country 1 will increase the demand for labour and will thus increase its price
 - Higher cost of labour results in more costly cloth in country 1

Figure 3.7 The impact of international trade

31

Trade in HOS

- Consumers in country 1 (labour abundant) will consume less cloth than in autarchy (relative price of cloth has increased at home) but producers in country 1 produce more cloth than in autarchy
- In autarchy home consumption = home production
- In open economy → export of cloth from country 1 to country 2
- Consumers in country 2 (capital abundant) will consume less steel than in autarchy (relative price of steel has increased at home)
- Producers in country 2 produce more steel than in autarchy
- Export of steel from country 2 to country 1

Production in HOS

- As a **consequence** of **trade**:
 - Cloth production becomes more capital intensive in country 1 because the relative price of labour increases wrt autarchy
 - There is a shift of labour and capital from steel production to cloth production
 - Steel production becomes more labour intensive in country 2 because the relative price of capital increases wrt autarchy
 - There is a shift of labour and capital from cloth production to steel production

HOS theorem

A country will **export** the **good** that **intensively uses** its **relatively abundant factor** of production, and it will **import** the commodity that **intensively uses** its relatively **scarce factor** of production

Specialization

Differently from the Ricardo model, the HOS model generally results in partial specialization

 A country will export only one commodity, but will produce at home both commodities
 Still consistent with 'inter-industry trade'

Factor price equalization

- As technology (productivity) and commodity prices are the same in both countries, also factor prices are equal in both countries in equilibrium
- This happens even though production factors are immobile (and thus cannot seek abroad a greater reward than at home)
- Gains from trade: compared to autarchy, with trade:
 - The reward of the relatively abundant factor increases
 - The reward of the relatively scarce factor decreases

Trade of factors?

• **Specialization** according to factor endwoment can be seen as a trade in production factors

- The capital-abundant country exports the capital-intensive commodity that embodies a large amout of capital
- The importing country imports capital embodied in imports, partly compensating for the domestic scarcity of capital

Summing up HOS

- Even in presence of identical technology and productivity in the production of commodities, the model predicts room for inter-industry trade
- Trade is driven by differences in the endowment of production factors
- Specialization (and export) in the commodity that is relatively intensive in the relative abuntant factor
- Worldwide equalization of commodity prices and factor prices

Empirical test of HOS

- Need to estimate the amount of a factor of production incorporated in international trade flows
- Compare the relative importance of factors of production incorporated in export with the actual relative endowment of factors in the exporting country
- Relative abundance of labour → a country's labour endowment is higher than its GDP equivalent share of the world's endowment of labour

Which is the share of 'correctly predicted' specialization according to factor abundance?

Table 3.3 Sign te	sts of factor	abundance
-------------------	---------------	-----------

Country	Identical technology	Different technology
All countries	0.50	0.62
Bangladesh	0.33	0.78
Indonesia	0.22	0.67
Portugal	0.22	0.78
Greece	0.11	0.56
Ireland	0.67	0.44
Spain	0.22	0.78
Israel	0.67	0.89
Hong Kong	0.67	0.89
New Zealand	0.44	0.22
Netherlands	0.44	0.44
France	0.33	0.33
West Germany	0.56	0.67
UK	0.67	0.78
USA	0.89	0.56

Source: Feenstra (2004, p. 49), who discusses Trefler (1995).

Empirical test of HOS

Very poor 'prediction' of the pure HOS model

 Prediction improves when the assumption of *'indentical technology'* is removed → comparative advantage! (Ricardo)

Factor price equalization?

Country	Hourly Compensation of Production Workers, 2005
United States	100
Germany	140
Japan	92
Spain	75
South Korea	57
Portugal	31
Mexico	11
China*	3

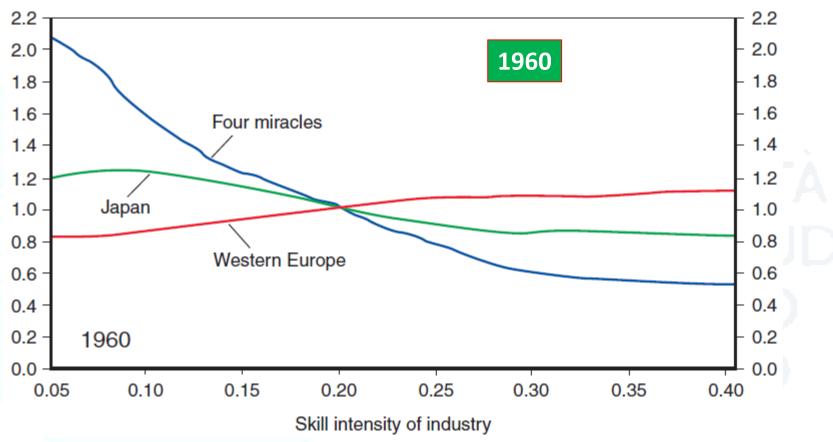
*2004

Source: Bureau of Labor Statistics, Foreign Labor Statistics Home Page.

Leontief paradox

• Even though the **US** has an historically **high K/L** ratio, the **capital intensity** of **import** is **larger** than the capital intensity of **export**

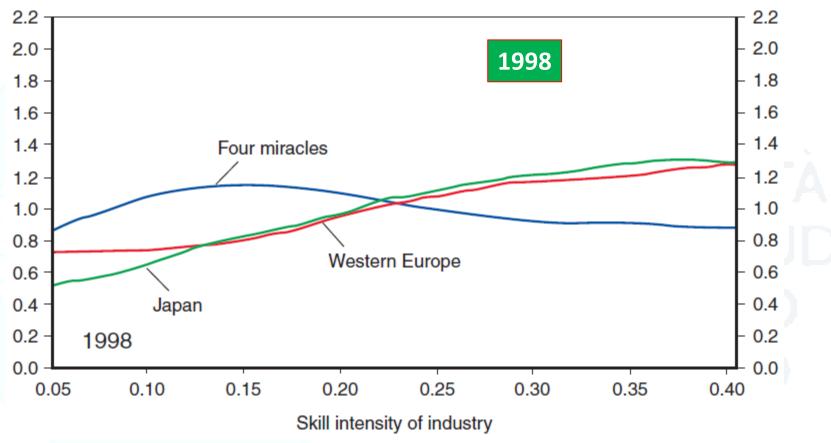
TABLE 5-2	Factor Content of U.S. Exports and Imports for 1962		
		Imports	Exports
Capital per n	nillion dollars	\$2,132,000	\$1,876,000
Labor (perso	n-years) per million dollars	119	131
Capital-labor	r ratio (dollars per worker)	\$17,916	\$14,321
Average year	rs of education per worker	9.9	10.1
Proportion of	f engineers and scientists in work force	0.0189	0.0255


Source: Robert Baldwin, "Determinants of the Commodity Structure of U.S. Trade," *American Economic Review* 61 (March 1971), pp. 126–145.

 This happens because the US are even more 'endowed' of highskill workers and in high-tech knowledge

But sometimes HOS works...

Share of U.S. imports by industry


*Four miracles: South Korea, Taiwan, Hong Kong, Singapore

But sometimes HOS works...

*Four miracles: South Korea, Taiwan, Hong Kong, Singapore

Trade and income distribution in HOS

 Moving from autarchy to trade has relevant implications in terms of income distribution

 Owners of a country's abundant factor gain from trade, but owners of a country's scarce factor lose

• These effects are **persistent**

Trade and income distribution in HOS

- The US case
 - US is relatively well endowed with capital and high-skill workers
 - This induces a specialization in sectors that are intensive of capital and of high-skill workers
 - Specialization also increase the remuneration of these factors and reduces the remuneration of low-skill workers
 politically-sensitive issue!
 - Trade contributes to increasing inequalities (across employees with different skills and between labour and capital)
- Persistent effect → unemployment subsidies for lowskill workers are not effective in the long run

HOS at work: the resource curse

- Consider the case in which one of the production factors is a 'natural' input (e.g. oil)
- The distribution across countries of that input is very much concentrated in a few countries
- Countries that are 'naturally' endowed with that factor will specialize in commodities intensive in that factor (e.g. gasoline)
- All other factors will be 'attracted' by the sector that is intensive in the natural resource

Resource curse: why is that a curse?

- Capital and labour will not be employed in manufacturing sectors but in activities that are strictly connected to the exploitation of the natural resource
- This leads to:
 - De-industrialization of the country
 - Shift of income to the owners of the natural resource
 - **Private** owner → high **inequality** in income **distribution**
 - Public owner → corruption in managing the rents
 - Dependence on the availability of a natural resource → exposed to fluctuation of (world) prices and to external shocks
 - Agricultural resource → weather shock
 - Mineral and fossil → new discoveries abroad, climate policy, etc

Comparison Ricardo vs HOS Assumptions

	Ricardo	HOS
Production factors	1	2
Within-country mobility of inputs	Yes	Yes
Between-country mobility of inputs	No	No
Technology / productivity	Heterogeneous	Homogeneous
Relative factors' endowment	-	Heterogeneous
Trade frictions	No	No

CARLO BO

Comparison Ricardo vs HOS Predictions of the model

	Ricardo	HOS
Inter-industry trade	Yes	Yes
Intra-industry trade	No	No
Full specialization	Yes	Not necessarily
Commodity price equalization	Yes	Yes
Factor(s) price equalization	No	Yes
Trade is mutually beneficial	Yes	Yes

What do Ricardo and HOS fail to explain?

- The Ricardo and HOS models motivate the existence of inter-industry trade
- Inter-industry trade → the range of commodities that a country exports differs from the range of commodities that a country imports
- Data suggest that <u>intra-industry</u> trade represents a relevant component of total trade
- How to explain intra-industry trade
 - Remove the assumption of perfect competition
 - Remove the assumption of homogeneous commodities