

Basic concepts of microeconomics and industrial organization: Consumer and producer behaviour

Giovanni Marin

Department of Economics, Society, Politics Università degli Studi di Urbino 'Carlo Bo'

Utility function

- Utility can be defined as the satisfaction a consumer derives from the consumption of commodities
- Utility is an 'ordinal' concept
 - U(2 beers)>U(1 beer)

— Is the U(2 beers) = 2 x U(1 beer)? 3x? 10x?
Cardinal differences cannot be measured

Utility function

- 'Well behaved' utility functions:
 - Utility is **increasing** in **consumption**
 - Utility is increasing at a decreasing rate →
 marginal utility of consumption is decreasing

Utility function with two goods

- We derive utility from the consumption of a bundle of goods
- Assume we can consume two goods: x₁ and x₂
- $U=U(x_1,x_2)$ $> dU/dx_1>0; ddU/ddx_1<0$ $> dU/dx_2>0; ddU/ddx_2<0$

Marginal rate of utility substitution

- The same level of utility can be attained by consuming different bundles of goods x₁ and x₂ (i.e. along the indifference curve)
- The <u>Marginal Rate of Utility Substitution</u> (MRUS) is the rate at which x₁ can be substituted for x₂ at the margin while maintaining the same level of utility
- This measures how much of x₁ the individual is willing to give up for a marginal increase in x₂ in order to attain the same level of utility

$$MRUS = \frac{dU(x_1, x_2) / dx_1}{dU(x_1, x_2) / dx_2}$$

• The MRUS represents the **slope** of the **indifference curve**

Equilibrium of the consumer

When choosing the amount of x₁ and x₂ to consume, the individual is subject to the budget constraint

$$p_1 x_1 + p_2 x_2 \le w$$

The individual can spend at most w (its disopsable wealth) in the consumption of x₁ and x₂ taking goods' prices as given

Utility maximization

The individual maximizes its utility subject to the budget constraint:

$$\max_{\{x_1, x_2\}} U(x_1, x_2) = f(x_1, x_2)$$

s.t.
$$p_1 x_1 + p_2 x_2 \le w$$

- Utility is maximized when the marginal rate of utility substitution is equal to the ratio between prices
- Rationale → the rate at which the individual is willing to renounce to a marginal amount of good x₁ in exchange of a marginal increase in the consumption of good x₂ is equal to the relative price of good x₂ in with respect to good x₁

X₁

Production with a single input

Technology describes how the input X (in quantity) is transformed into the output Y (in quantity)

- Total product (**production function**) \rightarrow Y=Y(X)

Marginal product

 It is the increase in output Y that is produced by a marginal increase in input X

MP=dY(X)/dX

Production costs

- The **cost** of producing a certain level of Y depends on:
 - The quantity of input X that is needed to produce Y
 - The price of input X
- Y=Y(X) => X=Y⁻¹(Y) => is the amount of input needed to produce Y (and is the inverse function of the total product function)
- Total costs of production as a function of Y: TC(Y)=P_X*Y⁻¹(Y) = f(Y)

Average and marginal costs

- <u>Average costs</u> are defined as the unitary cost of producing a certain output Y AC(Y)=TC(Y)/Y
- Marginal costs are defined as the cost of producing an additional unit of Y MC(Y)=dTC(Y)/Y

Costs and marginal product

 Decreasing marginal products => convex total costs => increasing marginal costs

 Constant marginal product => linear total costs => constant marginal costs

 Increasing marginal product => concave total costs => decreasing marginal costs

Production with two inputs

- Assume that production of Y requires two different inputs
 - Labour (L)
 - Capital (K)
- Production function
 - Y = Y(K,L)
 - A sort of recipe => a certain combination of K and L generates a certain amount of Y
 - The production function describes the production technology

Marginal rate of technical substitution

- The same level of output can be produced by using different bundles of inputs L and K (i.e. along the isoquant)
- The <u>Marginal Rate of Technical Substitution</u> (MRTS) is the rate at which L can be substituted for K at the margin while maintaining the same level of production
- This measures how much of K the firm can reduce for a marginal increase in L in order to obtain the same level of production

$$MRTS = \frac{dY(K,L)/dK}{dY(K,L)/dL}$$

The MRTS represents the slope of the isoquant

Properties of the production function

- The production function is strictly increasing in the level of inputs => dY/dL>0; dY/dK>0
- Constant returns to scale => Y(2K,2L)=2*Y(K,L)
- Marginal production of inputs is decreasing
 - For a given level of L, a marginal increase in K also increases output, but at an ever decreasing rate (same for K and L) => ddY/ddK<0; ddY/ddL<0

Equilibrium of the producer

 When choosing the amount of K and L to use in production, the producer should also consider the total cost of production associated with a given bundle of inputs:

$$C(K,L) = p_L L + p_K K$$

Cost minimization

 The firm minimize its costs provided the (monetary) output remains at a certain level (isoquant)

$$\min_{\{K,L\}} C(K,L) = p_L L + p_K K$$

s.t.
$$p_Y Y(K,L) \ge p_Y \overline{Y}$$

- Costs are minimized when the marginal rate of technical substitution is equal to the ratio between prices of inputs
- Rationale → the value of marginal product (i.e. price times the marginal quantity produced with a small increase in one input given the other input) of each input should equal the price of that input

Structure of production costs

- Fixed costs (FC)
 - They do **not vary** with the **quantity** of output that is produced
 - The producer will incur fixed costs even with no production
 - Average fixed costs per unity of output decrease as output grows → FC/Q
- Variable costs (VC)
 - Variable costs are **function** of the **quantity** of output produced → VC(Q)
 - As output grows, total variable costs grow
 - VC(Q=0)=0

Structure of production costs

<u>Marginal costs</u> (MC)

- Marginal costs represent the change in total costs when output changes marginally
 - Fixed costs are constant
 - Variable costs depend on Q

dTC/dQ=dFC/dQ+dVC(Q)/dQ=0+dVC(Q)/dQ

– They are (usually) function of output → MC(Q)

Average costs (AC)

Average costs represent the average total cost of producing a certain quantity Q

AC(Q)=FC/Q+VC(Q)/Q

Q	FC	VC(Q)/Q	VC(Q)	MC(Q)	AC(Q)	TC(Q)	Average FC
0	2	0	0	-	-	2	-
1	2	1.00	1.00	1.00	3.00	3.00	2.00
2	2	1.10	2.20	1.20	2.10	4.20	1.00
3	2	1.11	3.34	1.14	1.78	5.34	0.67
4	2	1.13	4.51	1.17	1.63	6.51	0.50
5	2	1.14	5.72	1.21	1.54	7.72	0.40
6	2	1.16	6.97	1.25	1.50	8.97	0.33
7	2	1.18	8.28	1.31	1.47	10.28	0.29
8	2	1.21	9.66	1.38	1.46	11.66	0.25
9	2	1.23	11.11	1.46	1.46	13.11	0.22
10	2	1.27	12.66	1.55	1.47	14.66	0.20
11	2	1.30	14.33	1.67	1.48	16.33	0.18
12	2	1.34	16.13	1.81	1.51	18.13	0.17
13	2	1.39	18.11	1.98	1.55	20.11	0.15
14	2	1.45	20.30	2.18	1.59	22.30	0.14
15	2	1.52	22.74	2.44	1.65	24.74	0.13

Q	FC	VC(Q)/Q	VC(Q)	MC(Q)	AC(Q)	TC(Q)	Average FC
0	2	0	0		-	2	-
1	2	1.00	1.00	1. <mark>0</mark> 0	3.00	3.00	2.00
2	2	1.10	2.20	1. <mark>2</mark> 0	2.10	4.20	1.00
3	2	1.11	3.34	14	1.78	5.34	0.67
4	2	1.13	4.51	1. 7	1.63	6.51	0.50
5	2	1.14	5.72	1.1	1.54	7.72	0.40
6	2	1.16	6.97	1 5	1.50	8.97	0.33
7	2	1.18				10.28	0.29
8	2	1.21	MC(Q)=TC(Q)-TC(Q-1)= =VC(Q)-VC(Q-1)			11.66	0.25
9	2	1.23				13.11	0.22
10	2	1.27	12.66	1.55	1.47	14.66	0.20
11	2	1.30	14.33	1.67	1.48	16.33	0.18
12	2	1.34	16.13	1.81	1.51	18.13	0.17
13	2	1.39	18.11	1.98	1.55	20.11	0.15
14	2	1.45	20.30	2.18	1.59	22.30	0.14
15	2	1.52	22.74	2.44	1.65	24.74	0.13

Short run vs long run

- In the **short run** some **inputs** are **fixed**
 - A factory cannot be phased out easily
 - In the very short run even labour could be fixed (notice period for firing workers)
 - Other inputs are variable even in the very short run (e.g. you can decide to fill the tank of your truck at any time)
- In the long run all inputs are variable
 - Factories can be built or dismantled
 - Workers can be hired or fired

Marginal costs and supply function

- Marginal cost are equivalent, ultimately, to the supply curve
 - In the short run, the producer is willing to accept any price greater or equal to the marginal cost to produce a certain quantity Q
 - Even if prices are below average costs and thus the company will experience a negative profit due to too high fixed costs, it will produce Q anyways to cover as much fixed costs as possible
 - Marginal profits (P-MC(Q)) are positive as long as P>MC(Q)

Market structure

- The market structure → how prices and quantity are set on the market
- The market structure **depends on** (among other things):
 - The number of consumers and producers
 - The bargaining power of each producer and consumers
- These factors ultimately depend on:
 - Cost structure
 - Shape of demand
 - Institutional setting (e.g. strength of the antitrust)

Market structures

Perfect competition

- Large number of (atomistic) consumers and producers
- Each consumer and producer is price taker (i.e. has no direct influence on prices)

Monopoly

- One single producer and multiple consumers
- Consumers are price takers, the producer is price maker

Monopsony

- One single consumer and multiple producers
- The consumer is price maker

Market structures

Oligopoly

- Few producers and multiple consumers
- Consumers are price takers
- Producers have some influence on prices, that also depends on the behaviour of other producers

Monopolistic competition

- Many consumers with preferences over variety of goods (that are substitute)
- Each producer is the monopolist for the production of a certain variety
- Varieties compete on the market

Perfect competition

- Many firms
- Identical and homegenous product
- Each firm is a **small part** of the **market**
- Each firm in the market takes the market price as being predetermined → firms are price takers
- Firms only decide how much to produce for a given price
- Each firm faces a 'flat' demand curve

Entry and exit in perfect competition

- In the short run, firms will produce as long as marginal costs are below the market price (even if average costs are larger than market prices)
- New firms will enter the market if their expected marginal cost is below the prevailing market price
- In the long run, firms with average costs larger than the market price will exit the market

Monopoly

- Only **one producer** is on the market
- This happens for a number of reasons that generate barrier to entry for potential competitors:
 - High fixed or sunk costs prevent potential entrants from entry => natural monopoly
 - Building a railway infrastructure
 - Building an electricity transmission network
 - Strategic behaviour of the incumbent that deter entry
 - Predatory prices
 - Large expenditure in **advertising**
 - Government regulation
 - Gambling and casino (in Italy)

Monopoly

- Differently from firms in perfectly competitive markets, the monopolist faces a downward sloping demand function
- The monopolist is not price-taker
- The price is set by the monopolist

Profit maximization in monopoly

 The monopolist will maximize the following profit function:

$$\max_{\{Q\}} \pi = Q * P(Q) - C(Q)$$

- Where Q*P(Q) are total revenues and C(Q) are total costs
- Recall that revenues in perfectly competitive markets were Q*P and not Q*P(Q)

Profit maximization in monopoly

• Profits are **maximized** when:

MR(Q) = MC(Q)

• where:

MR(Q) = d[Q*P(Q)]/dQ = P(Q) + dP(Q)/dQMC(Q) = dC(Q)/dQ

Oligopoly

- Few firms operate on the market
- Firms interact strategically to maximize their profits
- A firm decides either prices or quantities, taking into account the behaviour of other firms → optimal response function

Competition on prices (Bertrand)

- Two firms on the market with the same marginal cost function and no fixed costs
- Firms decide the price
- The firm that sets the lowest price on the market will serve the whole market
- Firms choose their price 'given' the price set by other firms
- Firms choose prices simultaneously

Competition on prices (Bertrand)

- Firm 1 maximizes profits
- Profits of firm 1 will be

> 0 if $P_1 > P_2$

- $P_1^*Q(P_1)/2-C(Q/2)$ if $P_1=P_2$ \rightarrow the two firms split equally the market
- >P₁*Q(P₁)-C(Q) if P₁<P₂ → firm 1 becomes the monopoly
- Firm 2 does the same
- As long as P₁*Q(P₁)-C(Q)>0 (positive profits), firm 1 will set P₁<P₂

Competition on prices (Bertrand)

- In the end, firms will choose a price such that profits of each firm are zero →
 MC₁=MC₂=P₁=P₂
- No firm has incentive to deviate
 - Increasing the price leads to null production
 - Reducing the price leads to negative profits
- Same result as in perfect competition!

Competition on quantity (Cournot)

- Each firm will set its level of production given the expected production of the other firm(s)
- All firms decide their quantity simultaneously
- Firms maximize their profits for given quantities produced by other firms

Competition on quantity (Cournot)

- Assume that **two firms** operate in the market
- Firm 1 maximizes its profits given the expected output produced by firm 2

$$\max_{\{Q_1\}} Q_1 P(Q_1 + Q_2^e) - C(Q_1)$$

- Firm 2 will do the same
- The optimal solution for firm 1 is a decreasing function of the expected quantity produced by firm 2
- The larger the quantity produced by firm 2, the lower the 'residual demand' for firm 1 (or alternatively, the lower the expected price)

Oligopoly and collusion

- The **Cournot** model results in
 - Prices higher than in perfect competition (and Bertrand oligopoly) and lower than in monopoly
 - Quantity lower than in perfect competition (and Bertrand oligopoly) and higher than in monopoly
- Firms could potentially increase their profits (i.e. total profits earned by producers) by producing the same quantity as the monopolist at the monopoly price → collusion
- Firms have great incentive to deviate from collusion as, at the margin, they will earn additional profits from deviating