Basic concepts of microeconomics and industrial organization: Consumer and producer behaviour

Giovanni Marin

Department of Economics, Society, Politics
Università degli Studi di Urbino 'Carlo Bo'

Utility function

- Utility can be defined as the satisfaction a consumer derives from the consumption of commodities
- Utility is an 'ordinal' concept
$-U(2$ beers $)>U(1$ beer $)$
- Is the $U(2$ beers $)=2 x U(1$ beer $)$? $3 x$? 10x?

Cardinal differences cannot be measured

Utility function

- 'Well behaved' utility functions:
- Utility is increasing in consumption
- Utility is increasing at a decreasing rate \rightarrow marginal utility of consumption is decreasing

Utility function with two goods

- We derive utility from the consumption of a bundle of goods
- Assume we can consume two goods: x_{1} and x_{2}
- $\mathrm{U}=\mathrm{U}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$
$>d U / \mathrm{dx}_{1}>0 ; \mathrm{ddU} / \mathrm{ddx}_{1}<0$
$>d U / \mathrm{dx}_{2}>0 ; \mathrm{ddU} / \mathrm{ddx}_{2}<0$

Indifference curves

Marginal rate of utility substitution

- The same level of utility can be attained by consuming different bundles of goods x_{1} and x_{2} (i.e. along the indifference curve)
- The Marginal Rate of Utility Substitution (MRUS) is the rate at which x_{1} can be substituted for x_{2} at the margin while maintaining the same level of utility
- This measures how much of x_{1} the individual is willing to give up for a marginal increase in $\mathbf{x}_{\mathbf{2}}$ in order to attain the same level of utility

$$
M R U S=\frac{d U\left(x_{1}, x_{2}\right) / d x_{1}}{d U\left(x_{1}, x_{2}\right) / d x_{2}}
$$

- The MRUS represents the slope of the indifference curve

Equilibrium of the consumer

- When choosing the amount of \mathbf{x}_{1} and $\mathbf{x}_{\mathbf{2}}$ to consume, the individual is subject to the budget constraint

$$
p_{1} x_{1}+p_{2} x_{2} \leq w
$$

- The individual can spend at most w (its disopsable wealth) in the consumption of x_{1} and x_{2} taking goods' prices as given

Utility maximization

- The individual maximizes its utility subject to the budget constraint:

$$
\begin{aligned}
& \max _{\left\{x_{1}, x_{2}\right\}} U\left(x_{1}, x_{2}\right)=f\left(x_{1}, x_{2}\right) \\
& \text { s.t. } \\
& p_{1} x_{1}+p_{2} x_{2} \leq w
\end{aligned}
$$

- Utility is maximized when the marginal rate of utility substitution is equal to the ratio between prices
- Rationale \rightarrow the rate at which the individual is willing to renounce to a marginal amount of good x_{1} in exchange of a marginal increase in the consumption of good x_{2} is equal to the relative price of good x_{2} in with respect to good x_{1}

From utility to demand function

Production with a single input

- Technology describes how the input X (in quantity) is transformed into the output \mathbf{Y} (in quantity)
- Total product (production function) $\boldsymbol{\rightarrow} \mathrm{Y}=\mathrm{Y}(\mathrm{X})$
- Marginal product
- It is the increase in output Y that is produced by a marginal increase in input X

$$
\mathrm{MP}=\mathrm{dY}(\mathrm{X}) / \mathrm{dX}
$$

Production costs

- The cost of producing a certain level of Y depends on:
- The quantity of input X that is needed to produce Y
- The price of input X
- $Y=Y(X)=>X=Y^{-1}(Y)=>$ is the amount of input needed to produce Y (and is the inverse function of the total product function)
- Total costs of production as a function of Y : $T C(Y)=P_{x}{ }^{*} Y^{-1}(Y)=f(Y)$

Average and marginal costs

- Average costs are defined as the unitary cost of producing a certain output Y $A C(Y)=T C(Y) / Y$
- Marginal costs are defined as the cost of producing an additional unit of Y $M C(Y)=d T C(Y) / Y$

Total cost

Marginal costs

Costs and marginal product

- Decreasing marginal products => convex total costs => increasing marginal costs
- Constant marginal product => linear total costs => constant marginal costs
- Increasing marginal product => concave total costs => decreasing marginal costs

Production with two inputs

- Assume that production of Y requires two different inputs
- Labour (L)
- Capital (K)
- Production function
$-\mathrm{Y}=\mathrm{Y}(\mathrm{K}, \mathrm{L})$
- A sort of recipe $=>$ a certain combination of K and L generates a certain amount of Y
- The production function describes the production technology

Isoquants

Marginal rate of technical substitution

- The same level of output can be produced by using different bundles of inputs L and K (i.e. along the isoquant)
- The Marginal Rate of Technical Substitution (MRTS) is the rate at which L can be substituted for K at the margin while maintaining the same level of production
- This measures how much of \boldsymbol{K} the firm can reduce for a marginal increase in L in order to obtain the same level of production

$$
M R T S=\frac{d Y(K, L) / d K}{d Y(K, L) / d L}
$$

- The MRTS represents the slope of the isoquant

Properties of the production function

- The production function is strictly increasing in the level of inputs $=>\mathrm{dY} / \mathrm{dL}>0 ; \mathrm{dY} / \mathrm{dK}>0$
- Constant returns to scale $=>\mathrm{Y}(2 \mathrm{~K}, 2 \mathrm{~L})=2 * \mathrm{Y}(\mathrm{K}, \mathrm{L})$
- Marginal production of inputs is decreasing
- For a given level of L, a marginal increase in K also increases output, but at an ever decreasing rate (same for K and L) $=>\mathrm{ddY} / \mathrm{ddK}<0$; $d d Y / d d L<0$

Equilibrium of the producer

- When choosing the amount of K and L to use in production, the producer should also consider the total cost of production associated with a given bundle of inputs:

$$
C(K, L)=p_{L} L+p_{K} K
$$

Cost minimization

- The firm minimize its costs provided the (monetary) output remains at a certain level (isoquant)

$$
\begin{aligned}
& \min _{\{K, \mathrm{~L}\}} C(K, L)=p_{L} L+p_{K} K \\
& \text { s.t. } \\
& p_{Y} Y(K, L) \geq p_{Y} \bar{Y}
\end{aligned}
$$

- Costs are minimized when the marginal rate of technical substitution is equal to the ratio between prices of inputs
- Rationale \rightarrow the value of marginal product (i.e. price times the marginal quantity produced with a small increase in one input given the other input) of each input should equal the price of that input

Structure of production costs

- Fixed costs (FC)
- They do not vary with the quantity of output that is produced
- The producer will incur fixed costs even with no production
- Average fixed costs per unity of output decrease as output grows \rightarrow FC/Q
- Variable costs (VC)
- Variable costs are function of the quantity of output produced $\rightarrow \mathrm{VC}(\mathrm{Q})$
- As output grows, total variable costs grow
- $\mathrm{VC}(\mathrm{Q}=0)=0$

Structure of production costs

- Marginal costs (MC)
- Marginal costs represent the change in total costs when output changes marginally
- Fixed costs are constant
- Variable costs depend on \mathbf{Q}

$$
\mathrm{dTC} / \mathrm{dQ}=\mathrm{dFC} / \mathrm{dQ}+\mathrm{dVC}(\mathrm{Q}) / \mathrm{dQ}=0+\mathrm{dVC}(\mathrm{Q}) / \mathrm{dQ}
$$

- They are (usually) function of output \rightarrow MC(Q)
- Average costs (AC)
- Average costs represent the average total cost of producing a certain quantity \mathbf{Q}
$A C(Q)=F C / Q+V C(Q) / Q$

\mathbf{Q}	FC	$\mathbf{V C (Q) / Q}$	$\mathbf{V C}(\mathbf{Q})$	$\mathbf{M C}(\mathbf{Q})$	$\mathbf{A C}(\mathbf{Q})$	TC(Q)	Average FC
0	2	0	0	-	-	2	-
1	2	1.00	1.00	1.00	3.00	3.00	2.00
2	2	1.10	2.20	1.20	2.10	4.20	1.00
3	2	1.11	3.34	1.14	1.78	5.34	0.67
4	2	1.13	4.51	1.17	1.63	6.51	0.50
5	2	1.14	5.72	1.21	1.54	7.72	0.40
6	2	1.16	6.97	1.25	1.50	8.97	0.33
7	2	1.18	8.28	1.31	1.47	10.28	0.29
8	2	1.21	9.66	1.38	1.46	11.66	0.25
9	2	1.23	11.11	1.46	1.46	13.11	0.22
10	2	1.27	12.66	1.55	1.47	14.66	0.20
11	2	1.30	14.33	1.67	1.48	16.33	0.18
12	2	1.34	16.13	1.81	1.51	18.13	0.17
13	2	1.39	18.11	1.98	1.55	20.11	0.15
14	2	1.45	20.30	2.18	1.59	22.30	0.14
15	2	1.52	22.74	2.44	1.65	24.74	0.13

Q	FC	VC(Q)/Q	$\mathrm{VC}(\mathrm{Q})$	MC(Q)	AC(Q)	TC(Q)	Average FC
0	2	0	0		-	2	-
1	2	1.00	1.00	1.00	3.00	3.00	2.00
2	2	1.10	2.20	1.20	2.10	4.20	1.00
3	2	1.11	3.34	1. 4	1.78	5.34	0.67
4	2	1.13	4.51	1.7	1.63	6.51	0.50
5	2	1.14	5.72	1. 1	1.54	7.72	0.40
6	2	1.16	6.97	15	1.50	8.97	0.33
7	2	1.18	$\begin{gathered} \mathrm{MC}(\mathrm{Q})=\mathrm{TC}(\mathrm{Q})-\mathrm{TC}(\mathrm{Q}-1)= \\ =\mathrm{VC}(\mathrm{Q})-\mathrm{VC}(\mathrm{Q}-1) \end{gathered}$			10.28	0.29
8	2	1.21				11.66	0.25
9	2	1.23				13.11	0.22
10	2	1.27	12.66	1.55	1.47	14.66	0.20
11	2	1.30	14.33	1.67	1.48	16.33	0.18
12	2	1.34	16.13	1.81	1.51	18.13	0.17
13	2	1.39	18.11	1.98	1.55	20.11	0.15
14	2	1.45	20.30	2.18	1.59	22.30	0.14
15	2	1.52	22.74	2.44	1.65	24.74	0.13

Short run vs long run

- In the short run some inputs are fixed
- A factory cannot be phased out easily
- In the very short run even labour could be fixed (notice period for firing workers)
- Other inputs are variable even in the very short run (e.g. you can decide to fill the tank of your truck at any time)
- In the long run all inputs are variable
- Factories can be built or dismantled
- Workers can be hired or fired

Marginal costs and supply function

- Marginal cost are equivalent, ultimately, to the supply curve
- In the short run, the producer is willing to accept any price greater or equal to the marginal cost to produce a certain quantity Q
- Even if prices are below average costs and thus the company will experience a negative profit due to too high fixed costs, it will produce Q anyways to cover as much fixed costs as possible
- Marginal profits (P-MC(Q)) are positive as long as P>MC(Q)

Market structure

- The market structure \rightarrow how prices and quantity are set on the market
- The market structure depends on (among other things):
- The number of consumers and producers
- The bargaining power of each producer and consumers
- These factors ultimately depend on:
- Cost structure
- Shape of demand
- Institutional setting (e.g. strength of the antitrust)

Market structures

- Perfect competition
- Large number of (atomistic) consumers and producers
- Each consumer and producer is price taker (i.e. has no direct influence on prices)
- Monopoly
- One single producer and multiple consumers
- Consumers are price takers, the producer is price maker
- Monopsony
- One single consumer and multiple producers
- The consumer is price maker

Market structures

- Oligopoly
- Few producers and multiple consumers
- Consumers are price takers
- Producers have some influence on prices, that also depends on the behaviour of other producers
- Monopolistic competition
- Many consumers with preferences over variety of goods (that are substitute)
- Each producer is the monopolist for the production of a certain variety
- Varieties compete on the market

Perfect competition

- Many firms
- Identical and homegenous product
- Each firm is a small part of the market
- Each firm in the market takes the market price as being predetermined \rightarrow firms are price takers
- Firms only decide how much to produce for a given price
- Each firm faces a 'flat' demand curve

Firm

Entry and exit in perfect competition

- In the short run, firms will produce as long as marginal costs are below the market price (even if average costs are larger than market prices)
- New firms will enter the market if their expected marginal cost is below the prevailing market price
- In the long run, firms with average costs larger than the market price will exit the market

Monopoly

- Only one producer is on the market
- This happens for a number of reasons that generate barrier to entry for potential competitors:
- High fixed or sunk costs prevent potential entrants from entry => natural monopoly
- Building a railway infrastructure
- Building an electricity transmission network
- Strategic behaviour of the incumbent that deter entry
- Predatory prices
- Large expenditure in advertising
- Government regulation
- Gambling and casino (in Italy)

Monopoly

- Differently from firms in perfectly competitive markets, the monopolist faces a downward sloping demand function
- The monopolist is not price-taker
- The price is set by the monopolist

Profit maximization in monopoly

- The monopolist will maximize the following profit function:

$$
\max _{\{\mathrm{Q}\}} \pi=Q^{*} P(Q)-C(Q)
$$

- Where $\mathbf{Q}^{*} \mathbf{P (Q)}$ are total revenues and $\mathbf{C}(\mathbf{Q})$ are total costs
- Recall that revenues in perfectly competitive markets were $\mathbf{Q}^{*} \mathbf{P}$ and not $\mathrm{Q}^{*} \mathrm{P}(\mathrm{Q})$

Profit maximization in monopoly

- Profits are maximized when:

$$
M R(Q)=M C(Q)
$$

- where:
$\operatorname{MR}(Q)=d[Q * P(Q)] / d Q=P(Q)+d P(Q) / d Q$

$$
M C(Q)=d C(Q) / d Q
$$

Profit function=Q*P(Q)-C(Q)

Profit

Oligopoly

- Few firms operate on the market
- Firms interact strategically to maximize their profits
- A firm decides either prices or quantities, taking into account the behaviour of other firms $\boldsymbol{\rightarrow}$ optimal response function

Competition on prices (Bertrand)

- Two firms on the market with the same marginal cost function and no fixed costs
- Firms decide the price
- The firm that sets the lowest price on the market will serve the whole market
- Firms choose their price 'given' the price set by other firms
- Firms choose prices simultaneously

Competition on prices (Bertrand)

- Firm 1 maximizes profits
- Profits of firm 1 will be
>0 if $P_{1}>P_{2}$
$>\mathrm{P}_{1} * \mathrm{Q}\left(\mathrm{P}_{1}\right) / 2-\mathrm{C}(\mathrm{Q} / 2)$ if $\mathrm{P}_{1}=\mathrm{P}_{2} \rightarrow$ the two firms split equally the market
$>P_{1}{ }^{*} Q\left(P_{1}\right)-C(Q)$ if $P_{1}<P_{2} \rightarrow$ firm 1 becomes the monopoly
- Firm 2 does the same
- As long as $P_{1}{ }^{*} Q\left(P_{1}\right)-C(Q)>0$ (positive profits), firm 1 will set $P_{1}<P_{2}$

Competition on prices (Bertrand)

- In the end, firms will choose a price such that profits of each firm are zero \rightarrow
$\mathrm{MC}_{1}=\mathrm{MC}_{2}=\mathrm{P}_{1}=\mathrm{P}_{2}$
- No firm has incentive to deviate
- Increasing the price leads to null production
- Reducing the price leads to negative profits
- Same result as in perfect competition!

Competition on quantity (Cournot)

- Each firm will set its level of production given the expected production of the other firm(s)
- All firms decide their quantity simultaneously
- Firms maximize their profits for given quantities produced by other firms

Competition on quantity (Cournot)

- Assume that two firms operate in the market
- Firm 1 maximizes its profits given the expected output produced by firm 2

$$
\max _{\left\{\mathrm{Q}_{1}\right\}} \mathrm{Q}_{1} P\left(\mathrm{Q}_{1}+Q_{2}^{e}\right)-C\left(Q_{1}\right)
$$

- Firm 2 will do the same
- The optimal solution for firm 1 is a decreasing function of the expected quantity produced by firm 2
- The larger the quantity produced by firm 2, the lower the 'residual demand' for firm 1 (or alternatively, the lower the expected price)

Optimal response functions

Oligopoly and collusion

- The Cournot model results in
- Prices higher than in perfect competition (and Bertrand oligopoly) and lower than in monopoly
- Quantity lower than in perfect competition (and Bertrand oligopoly) and higher than in monopoly
- Firms could potentially increase their profits (i.e. total profits earned by producers) by producing the same quantity as the monopolist at the monopoly price \rightarrow collusion
- Firms have great incentive to deviate from collusion as, at the margin, they will earn additional profits from deviating

